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was utilised. The experimental parameters are reported in Table 2, including: test number;
channel inclination; type of test (α = 0 or 1 for constant volume or volume flux); injected
volume or volume flux; flow behaviour index and consistency coefficient; fluid density; global
Reynolds and Froude numbers for tests conducted with constant volume flux (α = 1) in an
inclined channel (β > 0); and the state of the current.

We note that the highest observed value of the Reynolds number is Re = 60; this ensures
that the Stokes flow approximation is correct, because the gradual transition from laminar
to fully turbulent flow is expected to begin for Re > 500. In only two tests (25 and 42),
the equivalent uniform flow in the channel is supercritical with a Froude number greater
than unity (or, equivalently, with a normal depth less than the critical depth) and with the
maximum height of the predicted profile smaller than the normal and critical depths. For the
tests with Fr < 1, the maximum height of the predicted profile is between the critical depth
and the normal depth. A time shift equivalent to a virtual origin was introduced to interpret
the experimental data for the inclined channel and the constant volume subcase (α = 0) for
the horizontal channel. In the latter case, the correction was needed to account for the finite
size of the reservoir and the finite time needed to open the gate.

4 Discussion

The scaled, nondimensional results for current front position as a function of time are depicted
in Fig. 6 for horizontal channels with semicircular cross-sections, and in Fig. 7 for horizontal
channels with right triangular cross-sections. Figures 8 and 9 show the corresponding results
for inclined channels. Each Figure is split into two panels (a) and (b), each covering a different
range of abscissa and ordinate values. The different factors used for the scaling of X N in
the four Figures are expressed as fi (X N ), i = 1, 2, 3, 4. Figures 8 and 9, valid for inclined
channels, depict two additional reference lines representing the normal speed of uniform
currents of shear-thinning (n = 0.42) and Newtonian liquids. The inset in panel (a) of each
Figure represents an enlargement of a portion of the panel.

For horizontal channels, the experimental results (symbols) are in good agreement with
the theoretical predictions (solid lines) for constant volume flux (α = 1) and constant volume
(α = 0). In the latter case, only the late time evolution of the current is consistent with the
theory, while at early times the time exponent for the front end position differs from the
similarity solution. This is because the current, after the slumping phase, is initially in an
inertial-buoyancy regime, where buoyancy forces are balanced by inertia. The transition to a
viscous-buoyancy regime takes longer for constant volume (α = 0) than for constant volume
flux (α = 1) currents, as also noted by Sayag and Worster [16] for an axisymmetric geometry.
For inclined channels, good agreement with the theory at late times was again observed in
tests with α = 0. In tests with α = 1, the speed of the front was generally lower than the
theoretical prediction, and different flow regimes were observed. In some tests conducted in
triangular channels with small inclinations (up to 8.6◦), the flow was stable, but the front of
the current advanced with a constant speed lower than UX N predicted by Eq. (58) and equal
to the mean velocity Un in a channel with normal depth. The latter is significantly lower than
the former, as shown by their ratio, which is given for semicircular and triangular channels by

UX N

Un
= (2 + 5n) [2(n + 1)]−2(n+1)/(2+5n) (3n)−3n/(2+5n) (67)

UX N

Un
= (1 + 3n)(n + 1)−(n+1)/(1+3n)(2n)−2n/(1+3n), (68)
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Table 2 Experimental parameters for all tests

Test Shape β (deg) α q(ml s−α) n μ̃(Pa sn ) ρ(kg m−3) Re Fr State

21 c(2) 0.0 0.0 143.6 0.42 0.67 1,175

24 c(2) 0.0 0.0 311.2 0.42 0.67 1,175

52 c(2) 7.4 0.0 126 0.42 0.67 1,175

53 c(2) 4.5 0.0 130 0.42 0.67 1,175

55 c(2) 4.5 0.0 192 1.57 0.40 1,200

1 c(1) 0.0 1.0 1.35 0.42 0.67 1,175

2 c(1) 0.0 1.0 4.08 0.42 0.67 1,175

3 c(1) 0.0 1.0 0.57 0.42 0.67 1,175

5 c(1) 0.0 1.0 2.17 1.00 0.16 1,241

18 c(2) 4.0 1.0 0.79 1.00 0.16 1,241 6.4 0.11 me

19 c(2) 4.0 1.0 0.78 0.42 0.67 1,175 1.2 0.10 me

20 c(2) 5.5 1.0 2.34 0.42 0.67 1,175 6.0 0.27 me

25 c(2) 30.6 1.0 3.94 0.42 0.67 1,175 62.5 1.98 rw

26 c(2) 30.6 1.0 0.77 0.42 0.67 1,175 9.8 0.76 rw

27 c(2) 30.6 1.0 0.21 0.42 0.67 1,175 2.2 0.35

28 c(2) 30.6 1.0 0.30 0.42 0.67 1,175 3.3 0.43 rw

29 c(2) 30.6 1.0 0.24 0.42 0.67 1,175 2.6 0.37 irw

30 c(2) 30.6 1.0 0.18 0.42 0.67 1,175 1.9 0.32

33 c(2) 18.0 1.0 0.94 0.42 0.67 1,175 7.2 0.50 rw

34 c(2) 18.0 1.0 0.54 0.42 0.67 1,175 3.9 0.36

35 c(2) 18.0 1.0 1.64 0.42 0.67 1,175 13.6 0.69 rw

9 t 0.0 0.0 286 0.42 0.67 1,175

10 t 0.0 0.0 430 0.42 0.67 1,175

14 t 5.5 0.0 163.9 0.42 0.67 1,175

15 t 8.8 0.0 68.0 0.42 0.67 1,175

16 t 5.5 0.0 104.1 0.42 0.67 1,175

6 t 0.0 1.0 2.14 0.42 0.67 1,175

7 t 0.0 1.0 0.54 0.42 0.67 1,175

8 t 0.0 1.0 4.33 0.42 0.67 1,175

11 t 5.5 1.0 4.14 0.42 0.67 1,175 10.5 0.54 u

12 t 8.6 1.0 1.86 0.42 0.67 1,175 7.6 0.57 u

13 t 5.5 1.0 0.81 0.42 0.67 1,175 1.8 0.22 u

42 t 18.1 1.0 3.82 0.42 0.67 1,175 40 1.93

48 t 30.5 1.0 2.29 1.00 0.16 1,241 3.3 0.78 me

49 t 30.5 1.0 3.62 1.00 0.16 1,241 4.6 0.92 me

50 t 30.5 1.0 2.31 1.00 0.16 1,241 3.3 0.78 u

The symbols c(1) and c(2) indicate a semicircular section with r = 119 mm and r = 74.5 mm, respectively,
whereas t indicates a triangular section with 2θ = 90◦
Values of global Reynolds and Froude numbers are listed when α = 1 and β > 0
In the last column, “me” indicates a metastable state, “rw” indicates the presence of roll waves, “irw” indicates
incipient roll waves, and “u” indicates uniform flow with normal velocity
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Fig. 6 Experimental results for horizontal semicircular channels in different sets of tests. The vari-
ables X N and T are nondimensional and are scaled according to Eq. (21), with f1(X N ) = [(X N /ηN )

(2
√

2/Kc)
n/(n+1)]1/F1c . The solid line represents the theoretical prediction

Fig. 7 Experimental results for horizontal right triangular channels in different sets of tests. The vari-
ables X N and T are nondimensional and are scaled according to Eq. (48), with f2(X N ) = [(X N /ηN )

(2m/Kt )
n/(n+1)]1/F1t . The solid line represents the theoretical prediction

respectively. For both cross-sections, the numerical value of the ratio is always larger than
unity, reaching a maximum of 2 for n = 1 and n = 2. For tests with larger channel inclinations
(18.0◦–30.6◦), streamwise instabilities developed with bores followed by gentle profiles.
This phenomenon, known as roll waves, has been studied in the laminar regime by Julien
and Hartley [25] for Newtonian fluids, Ng and Mei [10] for power-law shear-thinning fluids,
and Longo [26] for power-law shear-thickening fluids. Roll waves start to form on uniform
currents with a minimum length corresponding to the level of dissipation of the (uniform)
flow and continue to grow with increasing lengths and bore speeds. Developed periodic roll
waves in the flow of power-law shear-thinning liquids in rectangular channels show a peak
fluid velocity exceeding the uniform current speed by ≈ 30 % [10]. Although the dynamics of
roll waves is strongly affected by the shape of the channel, we expect the peak fluid velocity
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Fig. 8 Experimental results for inclined semicircular channels in different sets of tests. The variables X N
and T are nondimensional and are scaled according to Eq. (32), with f3(X N ) = [(X5n+2

N /g3n
c )[16(n +

1)/(3
√

2(5n+2))]2(n+1)]1/[2α(n+1)+3n]. The solid line represents the theoretical prediction; the blue dashed
and green dash-dotted lines represent the normal speeds for a uniform current of shear-thinning (n = 0.42)
and Newtonian liquids, respectively. The inset in a shows an enlargement of a portion of the figure, illustrating
the behaviour of currents with roll waves (tests 25 and 28)

Fig. 9 Experimental results for inclined right triangular channels in different sets of tests. The variables X N
and T are nondimensional and are scaled according to Eq. (58), with f4(X N ) = [(X3n+1

N /g2n
t )[(n + 1)/

(3n + 1)](n+1)]1/[α(n+1)+2n]. The solid line represents the theoretical prediction; the blue dashed and green
dash-dotted lines represent the normal speeds for a uniform current of shear-thinning (n = 0.42) and Newtonian
liquids, respectively. The inset in a shows an enlargement of a portion of the figure, illustrating the behaviour
of currents in a metastable state (tests 48 and 49)

also to be larger than the uniform current speed in semicircular and triangular channels; this
velocity field pushes the current front end, which in turn moves faster than the uniform speed.
In some of the present tests, the front of the current advanced with an average speed greater
than the normal speed, but still lower than that predicted by the present model; this finding is
qualitatively consistent with the mechanism of current advancement described above. While
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Fig. 10 a Position of the current front for test 28 (semicircular inclined channel, n = 0.42 ± 2.5 %, μ̃ =
0.67±3.5 % Pa sn , ρ = 1175±1.0 % kg m−3, q = 0.30±1 % ml s−1, β = 30.6◦ ±0.5 %, α = 1.0±0.1 %,
and r = 74.5 ± 1 % mm, uncertainty expressed as one standard deviation). The thick red and thin light blue
solid lines are the theoretical prediction and the experimental results, respectively; the dashed red lines are
the 95 % confidence limits and the thick blue dashed line represents the uniform motion (normal speed). The
arrow indicates the transition to a different flow regime. The error bar equal to ±2 times the experimental
uncertainty in detecting the front end position of the current is indicated for comparison. b Sensitivity analysis
for the length of the gravity current in an inclined channel with a semicircular cross-section. The ratio of
the standard deviation, σi , of the ith parameter and the total standard deviation, σxN , is shown assuming an
uncertainty of 1 % for each parameter. The uncertainty in time is assumed to be equal to 1/50 s, i.e., half the
time interval between two subsequent frames

the model adopted herein does not consider inertia, the appearance of incipient roll waves
and/or metastable configurations suggests that inertial effects or other secondary effects were
not entirely negligible. Upon examining the position of the current front against time in greater
detail in specific tests exhibiting roll waves (e.g., test 28 conducted in a semicircular inclined
channel, Fig. 10a), it is seen that the current propagation is initially correctly predicted by
the present model. Then, the speed of the front end decreases quite abruptly as soon as the
roll waves increase in length. This was also documented for other tests showing longer roll
waves, and confidence intervals of the same order as those shown in Fig. 10a were obtained.
On the basis of these findings, it can be concluded that the present model correctly interprets
the advancement of the current before the transition between incipient roll waves and roll
waves. As soon as the roll waves increase in length, part of the energy is dissipated in the
breaking process of the bores, and the front of the current reduces its speed. To capture this
transition in triangular channels, numerous tests were added to the initially planned sequence.
The channel material was also changed from aluminium to PVC to detect the possible effects
of the contact angle and/or any electrical effects evident in microchannel viscous flows (see,
e.g., Yang and Li [27]); however no significant change was observed in the propagation rate.
Notably, tests conducted in identical conditions yielded different values for the speed of the
front end of the current; this indicated the metastability of the flow, which is highly sensitive
to minimal disturbances.

An uncertainty analysis was conducted by expressing the length of the current, xN , as a
function of the problem parameters and time, and by expanding xN in a Taylor series to first
order. After calculating the contribution of each parameter, the total uncertainty in xN was
obtained by summing the individual contributions in quadrature as

σxN =
√

(

∂xN

∂n

)2

σ 2
n +

(

∂xN

∂μ̃

)2

σ 2
μ̃ + . . ., (69)
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where the symbols σi denote the standard deviation, which is assumed to be an estimate
of the uncertainty. Figure 10b depicts the sensitivity of the model to the uncertainty in the
parameters as the ratio between the standard deviation associated with each parameter and the
total standard deviation, assuming a fixed uncertainty of 1 % for each parameter. The highest
ratio is associated with the rheological parameters n and μ̃, accounting for more than 80 %
of the total standard deviation of xN . This is because in the present tests, the uncertainties in
n and μ̃ are by far the most relevant - all the other sources of uncertainty are almost trivial.

5 Conclusions

We investigated the flow of laminar gravity currents of power-law liquids in horizontal and
inclined channels having different cross-sectional shapes, namely semicircular and right tri-
angular, theoretically and experimentally. The theoretical solutions are self-similar or based
on the method of characteristics, and allow the evaluation of the position of the current
front and the thickness of its profile, extending the Newtonian results of Takagy and Hup-
pert [20,21]. Laboratory experiments were conducted with liquids of different rheologies in
semicircular and triangular channels. The main conclusions of our work are:

– The position of the current front depends on (i) the volume parameter α, (ii) the liquid
rheology, and (iii) the channel inclination and shape of the cross-section. The latter
factor influences the mass balance equation and modulates the downstream evolution of
the current. Critical values of α are determined for horizontal channels as a function of
behaviour index n as αc = n/(n + 1), and for inclined channels as αc = 1, irrespective
of cross-section geometry. For triangular cross-sections, a maximum (minimum) value
of the rate of spreading is attained for α < αc (α > αc).

– The position of the current front obtained experimentally is generally in good agreement
with theory. For tests in inclined channels with α = 1, a variety of flow regimes typical
of open-channel flows were observed at the end of the tests: uniform flow with normal
depth, incipient roll waves, roll waves, metastable conditions. The final propagation rate
of the current front was overpredicted by the model, while the presence of roll waves
suggested the influence of inertia or other secondary effects. Upon examining the rate
of propagation of the current over time, it was discovered that the theoretical solution
accurately describes the phenomenon before the transition between incipient roll waves
and roll waves. As these require a sufficient channel length to develop, the final fate
of the currents analysed in the present tests is not known. However, on the basis of
our experimental results, we infer that the profile predicted for inclined channels in the
present model is a limiting profile of the current and marks the transition to a different
flow regime.

– The rheology of complex liquids is usually of concern in laminar flow models because
it is often not adequately known or described. This is confirmed by the present study,
where the rheological parameters are shown to be the main source of uncertainty. This
behaviour supports the use of carefully designed laboratory experiments as rheometric
tests.

– The results obtained may prove useful in analysing the joint influence of rheology, chan-
nel shape, and volume growth rate in environmental flows, such as turbidity currents,
avalanches, and pyroclastic flows of non-Newtonian fluids characterised by negligible
yield stress.
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