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1. Introduction

The notion of elliptic tube of a subset of Rn was defined and studied by Lempert in
[4]. For the definition, see section 3, where we deal with subsets of RPn to emphasize
the projective invariance of the construction.

If D ⊂ RPn, the elliptic tube De is a subset of CPn, a sort of “complexifica-
tion” of E. Some properties of the set D transfer automatically to De, for example
openness, closedness, connectedness and boundedness of D imply the same for De.

The same is not true for convexity; indeed Lempert had shown that the elliptic
tube over a triangle in R2 is not a convex subset of C2. This is not too surprising,
as the property of convexity in Cn is not projectively invariant. In [4], Lempert was
particularly interested in the case where the base domain D is a properly convex
domain. He showed that in this case the elliptic tube De is linearly convex, hence
pseudoconvex. He also proved that the Hilbert distance on D is the restriction of
the Kobayashi distance on De. In [9] a Monge-Ampère maximal problem is studied
on the elliptic tube De when D is properly convex.

In this paper we show that if D is a properly convex domain, the elliptic tube De

is C-convex, and that the Kobayashi distance on De is complete. Then we use the
projective invariance of the elliptic tubes to construct a natural complexification of

1



June 17, 2010 18:15 WSPC/INSTRUCTION FILE TubesIJM2

2 D. Alessandrini and A. Saracco

convex real projective manifolds. In this paper, by a convex real projective mani-
fold we mean a manifold carrying a convex real projective structure, a geometric
structure in the sense of Klein (see [2] for details).

Section 2 introduces the different notions of convexity needed in the sequel,
namely linear convexity and C-convexity, and the necessary instruments for the
proofs in the following sections, among which an important one is the notion of
projective dual complement.

In section 3 the definition and the first properties of elliptic tubes are given.
We also prove that if D ⊂ RPn is an open convex set, then the tube over the
dual complement of D coincide with the dual complement of the tube over D.
A consequence is that De is linearly convex. As a corollary, elliptic tubes over
convex domains are pseudoconvex, holomorphically convex, domains of holomorphy,
polynomially convex, Runge domains, and are convex with respect to the linear
fractions.

In section 4 we show some regularity properties of elliptic tubes. Namely, if ∂D is
of class Ck then also ∂De\∂D is. Unless D is very special (projectively equivalent to
the ball), there is no regularity at the real points of the boundary of the elliptic tube.
This prevents to use the equivalence between linearly convexity and C-convexity
which holds for connected C1-smooth domains. Then we prove that elliptic tubes
over properly convex domains are C-convex. Using a characterization of Kobayashi
complete hyperbolicity of C-convex domains given in [5], this shows that elliptic
tubes over properly convex domains are complete Kobayashi-hyperbolic, and that
they are taut and hyperconvex.

In section 5 we apply our results to real and complex projective manifolds (in the
sense of Klein). To every convex real projective manifold we associate in a natural
way a complex projective manifold, that we call its complexification. We show that
this complex projective manifold is complete Kobayashi-hyperbolic and that it is
homeomorphic in a natural way to the tangent bundle of the original convex real
projective manifold.

2. Linearly convex and C-convex sets

In this section, we will recall some results about linear convexity and C-convexity
that we will need in the following. We will also recall the definition of convexity for
a subset of the real projective space.

Let K be a field, V be a finite dimensional vector space over K, P = P(V ) be
the corresponding projective space, V ∗ be the dual of V and P∗ = P(V ∗) be the
projective dual.

A subset E ⊂ P is said to be linearly convex if the complement of E is a union
of projective hyperplanes or, in other words, if every point in the complement of E
is contained in a projective hyperplane disjoint from E.

The intersection of linearly convex sets is linearly convex, and the space P is
linearly convex. If E ⊂ P is any set, the linearly convex hull of E is the intersec-
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tion of all the linearly convex sets containing E. This is just the complement of the
union of all the projective hyperplanes disjoint from E. Every element ξ ∈ P∗ is a
projective class of linear functionals, hence it has a well defined kernel denoted by
ker(ξ), which is a projective hyperplane of P. If x ∈ P, the set

Ann(x) = {ξ ∈ P∗ | x ∈ ker(ξ)}

is called the annihilator of x, and it is a projective hyperplane of P∗. If φ : P 7→ P∗∗
is the canonical identification, then Ann(x) = ker(φ(x)).

Let E ⊂ P be a set. Then the dual complement of E is the set

E∗ = {ξ ∈ P∗ | ker(ξ) ∩ E = ∅}

i.e. it is the set of all projective hyperplanes disjoint from E. Note that if E1 ⊂ E2,
then E∗2 ⊂ E∗1 .

Lemma 2.1. If E ⊂ P, then

E∗ = P∗ \
⋃
x∈E

Ann(x)

In particular E∗ is linearly convex.

Proof. Let ξ ∈ E∗. If x ∈ P is such that ξ ∈ Ann(x), then x ∈ ker(ξ), hence x 6∈ E.
Therefore ξ ∈ P∗ \

⋃
x∈E Ann(x).

Let ξ 6∈ E∗, then there is x ∈ E ∩ ker(ξ). Hence ξ ∈ Ann(x), with x ∈ E.

If F ⊂ P∗, we will identify F ∗ ⊂ P∗∗ with φ−1(F ∗) ⊂ P, and we will write
F ∗ = φ−1(F ∗) ⊂ P. More explicitly we have

F ∗ = {x ∈ P | Ann(x) ∩ F = ∅}

By previous lemma, we have the alternative description

F ∗ = P \
⋃
ξ∈F

ker(ξ)

Lemma 2.2. E∗∗ is the linearly convex hull of E. In particular E ⊂ E∗∗, and if
E is linearly convex, then E = E∗∗

Proof. x ∈ E∗∗ iff Ann(x) is disjoint from E∗ iff every projective hyperplane con-
taining x intersects E. Hence the complement of E∗∗ is the union of the projective
hyperplanes not intersecting E.

Let K = R or K = C. It is easy to see that if E is open, then E∗ is compact, and
if E is compact then E∗ is open. E∗ is bounded in some affine patch if and only if
E has interior points.

Let E ⊂ P. A projective hyperplane is said to be tangent to E if it intersects
the boundary ∂E but it does not intersects the interior part int(E).



June 17, 2010 18:15 WSPC/INSTRUCTION FILE TubesIJM2

4 D. Alessandrini and A. Saracco

Proposition 2.1. Let E ⊂ P be open. Then (E)
∗

= int(E∗). Moreover we have

∀ξ ∈ P∗ ξ ∈ ∂E∗ ⇔ ker(ξ) is tangent to E

Let E ⊂ P be compact. Then (int(E))∗ ⊃ E∗. Moreover we have

∀ξ ∈ P∗ ξ ∈ ∂E∗ ⇒ ker(ξ) is tangent to E

Proof. See [7], prop. 2.5.1.

If K = R a set E ⊂ P is said to be convex if it does not contain projective lines
and if the intersection with every projective line is connected. An open or compact
convex set is homeomorphic to an open or closed ball.

Theorem 2.1. The connected components of a linearly convex set are convex. Open
or compact convex sets are linearly convex. If E is connected and open or compact,
then E is convex iff it is linearly convex. Moreover, the dual complement of a convex
set is convex.

Proof. See [7], prop. 1.3.4, thm. 1.3.6 and thm. 1.3.11.

A convex set E ⊂ RPn is said to be properly convex if it is not contained in
a projective hyperplane and it does not contain an affine line.

Theorem 2.2. Let E ⊂ RPn be a properly convex open set. Then:

(1) E is relatively compact in an affine patch RPn \H.
(2) int(E) and E are also properly convex, and int

(
E
)

= int(E) and int(E) = E

(3) (E)
∗

= int (E∗) and (int(E))∗ = E∗.

Proof. See [7], prop. 1.3.1 and thm. 1.3.14.

Proposition 2.2. Let E ⊂ RPn be a compact convex set. Then E has a basis of
properly convex neighborhoods.

Proof. A linearly convex set has a basis of linearly convex neighborhoods (see
[7], page 17) (Uα). As E is connected, it is always contained in the interior of a
connected component of Uα, that is convex.

Proposition 2.3. Let D ⊂ Rn be a convex open set not containing straight lines.
Then for all ε > 0, there are two strictly convex domains D1 = D1(ε) and D2 =
D2(ε) with real analytic boundary, such that D1 ⊂ D ⊂ D2, and D2\D1 is contained
in the ε-neighborhood of ∂D (i.e. supx∈D2\D1 d(x, ∂D) < ε, where d makes reference
to the Euclidean distance on Rn).

Proof. See [6], thm. 2.1.
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Corollary 2.1. Let D ⊂ RPn be a properly convex open set. Then there is an
exhaustion of D made by strictly convex open sets Dk with real analytic boundary.

Proof. Since D is properly convex and open, it is starred with respect to all of its
points. Consider an affine patch containing D such that D is convex and 0 ∈ D. Fix
a sequence 1 > δk > 0 strictly decreasing to 0. We define E1−δk

= (1− δk)D ⊂ D.
Suppose we have defined Dk ⊂ E1−δk

, strictly convex and with real analytic
boundary (and Dj b Dl, for j < l < k̄), for all k < k̄. We need to construct
Dk̄ ⊂ E1−δk̄

. Fix εk̄ < min{δk̄, d(∂Dk̄−1, ∂E1−δk̄
)}. E1−δk̄

is convex and bounded, so
by the previous proposition we can find Dk̄ = Dk̄(εk̄) ⊂ E1−δk̄

strictly convex with
real analytic boundary such that E1−δk̄

\ Dk̄ is contained in the εk̄-neighborhood
of E1−δk̄

. So Dk̄ c Dk̄−1.
The defined sets Dk have the required regularity properties and form an exhaus-

tion of D.

If K = C a set E ⊂ P is C-convex if it does not contain projective lines and if
the intersection with every projective line is connected and simply connected. An
open C-convex set is homeomorphic to an open ball (see [7], thm. 2.4.2).

Let E ( P be an open connected set. If a ∈ ∂E, we denote by Γ(a) the set of all
tangent hyperplanes to E at a. We have Γ(a) = Ann(a) ∩ E∗.

Theorem 2.3. If E ( CPn is an open connected set, with n > 1, E is C-convex
iff for all a ∈ ∂E, Γ(a) is non-empty and connected.

Proof. See [7], thm. 2.5.2.

3. Elliptic tubes

We denote by π : Rn+1 \ {0} 7→ RPn the natural projection.
Let I ⊂ RP1 be an interval, with extremes a0 and a1. Then there are two vectors

v0, v1 ∈ R2 such that π(v0) = a0, π(v1) = a1 and

int(I) = π({c0v0 + c1v1 | c0, c1 ∈ R, c0c1 > 0})

I = π({c0v0 + c1v1 | c0, c1 ∈ R, c0c1 ≥ 0})

Consider the dual basis v0, v1 ∈ (R2)∗. Now we have

int(I) = {x ∈ RP1 | v1(x)v0(x) > 0}

I = {x ∈ RP1 | v1(x)v0(x) ≥ 0}

Consider the natural inclusion RP1 ⊂ CP1. Consider the sets

int(I)e = π({c0v0+c1v1 | c0, c1 ∈ C,< (c0c1) > 0}) = {z ∈ CP1 | <
(
v0(z)v1(z)

)
> 0}

I
e

= π({c0v0 + c1v1 | c0, c1 ∈ C,< (c0c1) ≥ 0}) = {z ∈ CP1 | <
(
v0(z)v1(z)

)
≥ 0}
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It is easy to see that the sets int(I)e and I
e

are just the open and closed circle
in CP1 with diameter I. The circles int(I)e and I

e
are well defined up to projective

changes of coordinates in RP1.
In the same way, if I ⊂ RPn is a segment with extremes a0 and a1 there are two

vectors v0, v1 ∈ Rn+1 such that π(v0) = a0, π(v1) = a1 and

int(I) = π({c0v0 + c1v1 | c0, c1 ∈ R, c0c1 > 0})

I = π({c0v0 + c1v1 | c0, c1 ∈ R, c0c1 ≥ 0})

If L is the real projective line containing I, we denote by LC the complexification
of L. Then int(I)e and I

e
are the circles in LC with diameter I, well defined as in

the previous section:

int(I)e = π({c0v0 + c1v1 | c0, c1 ∈ C,< (c0c1) > 0})

I
e

= π({c0v0 + c1v1 | c0, c1 ∈ C,< (c0c1) ≥ 0})

Let D ⊂ RPn be a set. The elliptic tube with base D is defined (as in [4]) as
the set

De =
⋃
{Ie | I ⊂ D is a closed segment } ⊂ CPn

The definition is projectively invariant. If D is open, then this definition is equivalent
to

De =
⋃
{Ie | I ⊂ D is an open segment } ⊂ CPn

Note that if D is open also De is open, and if D is closed also De is closed. If
D is connected also De is connected. If D is contained in an affine patch also De is
contained in the same affine patch, and if D is bounded in an affine patch, also De

is bounded in the same affine patch. Moreover, if D is contained in an affine patch,
then D is a deformation retract of De. If D is open (non necessarily affine) there is
a projectively invariant deformation retraction from De to D. In these cases De is
homotopically equivalent to D.

Let D ⊂ RPn be an open convex set. Then π−1(D) ⊂ Rn+1 is the union of two
disjoint open convex cones. We choose one of these convex cones, and we denote it
by D̃.

Let D∗ ⊂ (RPn)∗ be the dual complement of D. Then π−1(D) ⊂ (Rn+1)∗ is
the union of two disjoint open convex cones. Exactly one of these two convex cones
contains only linear functionals that are positive on D̃, we denote this cone by (D̃)

∗
.

Let F ⊂ (RPn)∗ be a compact set such that F∗ = D. In other words F is a
compact set such that the linearly convex hull of F is D∗. If ξ ∈ F , we denote by
ξ̃ an element of (D̃)

∗
such that π(ξ̃) = ξ. Then

D = {x ∈ RPn | ∀f, g ∈ F : f̃(x)g̃(x) > 0}
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Theorem 3.1. Let D and F as above. Then

De = {z ∈ CPn | ∀f, g ∈ F : <
(
f̃(z)g̃(z)

)
> 0}

Proof. See [4], thm. 2.1.

Theorem 3.2. Let D and F as above. Then

(Fe)∗ = De

Proof. (Fe)∗ ⊃ De: We have to show that if ξ ∈ Fe, then ker(ξ)∩De = ∅. If ξ ∈ Fe,
then by definition of elliptic tubes there are f, g ∈ F such that ξ̃ = c0f̃ + c1g̃ with
c0, c1 ∈ C, < (c0c1) ≥ 0. Let z ∈ CPn be such that ξ̃(z) = c0f̃(z)+ c1g̃(z) = 0. Then

<
(
f̃(z)g̃(z)

)
= |g̃(z)|< f̃(z)

g̃(z)
= −|g̃(z)|<c1

c0
= −|g̃(z)|

|c0|
< (c0c1) ≤ 0

Hence z 6∈ De.
(Fe)∗ ⊂ De: We have to show that if z 6∈ De there exists an element ξ ∈ Fe

such that z ∈ ker(ξ). If z 6∈ De there are f, g ∈ F such that <
(
f̃(z)g̃(z)

)
≤ 0. Now

if ξ is such that ξ̃ = ˜g(z)f̃ − f̃(z)g̃, then ξ ∈ Fe, and z ∈ ker(ξ).

Corollary 3.1. If D ⊂ RPn is an open convex set, then De is linearly convex.

Proof. A dual complement is always linearly convex. Note that this statement also
follows from the first part of the proof of [4], thm. 2.2.

Lemma 3.1. Let D ⊂ RPn be a compact convex set, and let (Uk) be a family of
open convex sets such that Uk+1 ⊂ Uk and

⋂
Uk = D. Then De =

⋂
Uek .

Proof. De ⊂
⋂
Uek : For all k we have D ⊂ Uk, hence De ⊂ Uek .

De ⊃
⋂
Uek : We only have to prove that if L ⊂ RPn is a real projective line,

and LC is its complexification, then De ∩ LC ⊃ LC ∩ (
⋂
Uek) =

⋂(
Uek ∩ LC). This

is easy because L ∩D and L ∩ Uk are just intervals, and LC ∩De and LC ∩ Uk are
just circles.

Corollary 3.2. If D ⊂ RPn is a compact convex set, then De is linearly convex.

Proof. By proposition 2.2, we can always construct a family of open properly
convex sets such that Uk+1 ⊂ Uk and

⋂
Uk = D. By previous lemma De =

⋂
Uek .

If z 6∈ De, we can find a k such that z 6∈ Uek , and as, by previous corollary, Uek is
linearly convex, then there is a projective hyperplane H containing z and disjoint
from Uek . Hence De is linearly convex.

Corollary 3.3. Let D be an open or compact properly convex set. Then

(De)∗ = (D∗)e
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Proof. If D is open, then by the previous theorem we know that De = ((D∗)e)∗.
Hence (De)∗ = ((D∗)e)∗∗ = (D∗)e, because by previous corollary (D∗)e is linearly
convex.

If D is compact, then D∗ is open, hence we have ((D∗)e)∗ = (D∗∗)e = De. Hence
(D∗)e = (De)∗.

Corollary 3.4. Let D be an open properly convex set. Then De is pseudoconvex,
holomorphically convex, a domain of holomorphy, polynomially convex, a Runge
domain, and it is convex with respect to the linear fractions. Let D be a compact
properly convex set. Then De is polynomially convex.

Proof. This follows from the fact that De is linearly convex and with connected
dual complement. See [7], prop. 2.1.8, prop. 2.1.9 and prop. 2.1.11.

4. Regularity and C-convexity of elliptic tubes

Let D ⊂ RPn be an open properly convex set, let hD be the Hilbert distance on D
(see [4], sect. 3, for all the definitions needed here), and let kDe be the Kobayashi
distance on De. Note that as D is bounded in some affine patch, also De is bounded
in the same affine patch, hence De is Kobayashi hyperbolic, i.e. kDe is a non degen-
erate distance.

Theorem 4.1. If D ⊂ RPn is an open properly convex set, then

(1) For all p, q ∈ D, hD(p, q) = kDe(p, q).
(2) If L ⊂ RPn is a real projective line, then LC ∩ De is an open disk, and kDe

restricted to LC ∩De is the Poincaré distance on the disk.
(3) If z ∈ De \D, let L be the unique real line such that LC contains z (LC is just

the line containing z and z̄). Then there exists x ∈ L such that

kDe(z, x) = min
p∈D

kDe(z, p)

Proof. Note that the first statement is [4], thm. 3.1. The other two can be proved
in the same way.

Consider the functions:

d : De 3 z 7→ min
p∈D

kDe(z, p) ∈ R≥0

φ : De 3 z 7→ 2 arctan(tanh(d(z))) ∈ [0, π/2)

Choose a real projective hyperplane H such that D is bounded in the affine
patch Rn = RPn \ H. Hence De is bounded in the affine patch Cn = CPn \ HC.
With these affine coordinates, De ⊂ D ⊕ iRn. Consider the function

p : D ⊕ iRn 3 z = x+ iy 7→ inf{t > 0 | x+ t−1y ∈ D}
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Lemma 4.1. Let L ⊂ Rn be a real line. Then LC∩(D⊕iRn) is a strip S = (a, b)⊕iR
and

p|S(z) = p|S(x+ iy) =

{
y
b−x if y ≥ 0
y

a−x if y < 0

Moreover,

{p(z)p(z̄) = 1} = ∂De \ ∂D

Proof. It is a simple computation.

We can now define

u : De 3 z 7→ arctan
(
p(z) + p(z̄)
1− p(z)p(z̄)

)
∈ [0,∞)

Proposition 4.1.

u = φ

Proof. Choose a real line L ⊂ Rn, and compute explicitly u on LC∩De. Also φ can
be computed explicitly on LC ∩De using the previous theorem. Choose coordinates
on LC ∩De such that it is the unit disk in C: then on this disk both functions are
equal to

arctan

(
2|=(z)|
1− |z|2

)
=
∣∣∣∣arg

1 + z

1− z

∣∣∣∣
Proposition 4.2. Suppose that D has a boundary of class Ck (with k ∈ N∪{∞}∪
{ω} ). Then the functions p and u are of class Ck on their domains.

Proof. Let z = x + iy ∈ D ⊕ iRn. The half-line {x + t−1y | t > 0} cuts ∂D in a
single point h ∈ ∂D. By hypothesis, there exists a neighborhood U of h in Cn and
a function f : U 7→ R such that ∂D ∩ U = f−1(0) and ∀ζ ∈ ∂D : dfζ 6= 0. Then
there exists a neighborhood V of z in Cn, such that for all z′ = x′ + iy′ ∈ V , p(w)
is precisely the unique value of t such that f(x′ + t−1y′) = 0. Observe that

∂

∂t
f(x+ t−1y) = − 1

t2
〈
∇f(x+ t−1y), y

〉
,

which on ∂D is non vanishing since the direction y is transversal to ∂D. Thus, by
the implicit function theorem p is of class Ck near z.

Then also u is of class Ck.

Proposition 4.3. Suppose that D has a boundary of class Ck (with k ∈ N∪{∞}∪
{ω} ). Then ∂De \ ∂D is of class Ck.
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Proof. ∂De \ ∂D ⊂ D ⊕ iRn, and it is precisely the set where p(z)p(z̄) = 1. Fix
ζ ∈ ∂De \ ∂D. Let LC be the complex line containing ζ and ζ̄. Then

p(z)p(z̄)|LC = − y2

(b− x)(a− x)

where x+ iy is the coordinate on LC corresponding to z. We have

∂

∂y
(p(z)p(z̄))|LC∩∂De =

2
y
6= 0

Hence by the implicit function theorem ∂De \ ∂D is of class Ck.

Theorem 4.2. Suppose that D ⊂ RPn is a properly convex open set with ∂D of
class C1. Then De is C-convex.

Proof. Let a ∈ ∂De. Since De is linearly convex, Γ(a) 6= ∅. If a 6∈ ∂D, we know
that ∂De is smooth at a, hence it has only one tangent real hyperplane H at a.
Note that H has real dimension 2n − 1. It contains only one complex hyperplane,
hence Γ(a) is a single point, hence it is connected. If a ∈ ∂D, then a is a real
point. Γ(a) = Ann(a)∩ (De)∗ = Ann(a)∩ (D∗)e. By the second part of proposition
2.1, Ann(a) ∩ Rn is a real hyperplane (of dimension n − 1) tangent to D, hence
Ann(a) intersects (D∗)e in a single point, and also Γ(a) is a single point hence it is
connected.

Corollary 4.1. Suppose that D ⊂ RPn is a properly convex open set. Then De is
C-convex.

Proof. By corollary 2.1, there is an exhaustion of D made by (strictly) convex
domains Dk whose boundary is real analytic. By theorem 5.1, each De

k is C-convex.
From the definition of the elliptic tubes is obvious that

D =
⋃
Dk ⇒ De =

⋃
De
k.

Hence De is an increasing union of C-convex open sets, thus C-convex (see [7], prop.
2.2.2).

Corollary 4.2. Suppose D ⊂ RPn is a properly convex open set. Then De is com-
plete Kobayashi hyperbolic, it is taut, and it is hyperconvex.

Proof. By previous corollary, De is a bounded C-convex open set. Hence the state-
ment follows from [5], thm. 1.

Corollary 4.3. Suppose that D ⊂ RPn is a convex open set. Then De is C-convex.

Proof. If D is bounded, it is corollary 4.1. If D is unbounded, it is increasing union
of bounded convex open sets, hence De is increasing union of C-convex open sets,
hence C-convex.
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Corollary 4.4. Suppose that D ⊂ RPn is a compact convex set. Then De is C-
convex.

Proof. If D is compact, then D∗ is open, hence (D∗)e is C-convex. By [7], thm.
2.3.9, the dual complement of an open C-convex set is C-convex, hence De is C-
convex.

5. Complexification of convex real projective manifolds

The projective invariance of the elliptic tubes may be used to construct a com-
plexification of real manifolds with a suitable structure, namely with a structure
of convex real projective manifold. The complexifications will have a structure of
complex projective manifolds. These structures are geometric structures in the sense
of Klein, see [2] for a survey paper. Here we recall the definitions we need in the
following.

Let K be R or C, and let M be a manifold of dimension n if K = R, and of di-
mension 2n if K = C. A KPn-structure on M is given by a maximal atlas {(Ui, φi)},
where the sets Ui form an open covering of M and the charts φi : Ui −→ KPn are
projectively compatible, i.e. the transition maps

φi,j = φi|Ui∩Uj
◦ φ−1

j |φj(Ui∩Uj) : φj(Ui ∩ Uj) −→ φi(Ui ∩ Uj)

have the property that for every connected component C of the intersection Ui ∩
Uj there exists a projective map A ∈ PGLn+1(K) such that φi,j |C = A|C . A
KPn-manifold is a manifold with a KPn-structure. They are called real projective
manifolds if K = R and complex projective manifolds if K = C.

For example every open subset of KPn (included KPn itself) has a natural KPn-
structure given by the inclusion map and all the charts that are compatible with
the inclusion map. More interesting examples can be constructed by taking an
open subset Ω of KPn and a subgroup Γ ⊂ PGLn+1(K) acting freely and properly
discontinuously on Ω. Then the quotient space Ω/Γ is a manifold and it inherits a
KPn-structure from Ω. The KPn-manifolds we will consider here are of this form.

The most interesting case is when K = R and Ω ⊂ RPn is an open prop-
erly convex set. Real projective manifolds of the form Ω/Γ are called convex real
projective manifolds. It is possible to construct many interesting manifolds of this
form. For example, according to the Klein model of hyperbolic space, the hyper-
bolic space is identified with an ellipsoid Hn ⊂ RPn, and the group of hyperbolic
isometries is identified with the group of projective transformations of the ellipsoid,
O+(1, n) ⊂ PGLn+1(R). By this identification, every complete hyperbolic mani-
fold is also a convex real projective manifold, and this gives plenty of interesting
examples of convex real projective manifolds. It is also possible to construct many
interesting examples when Ω is not an ellipsoid.

Let M = Ω/Γ be a convex real projective manifold, in particular Ω ⊂ RPn is
an open properly convex set and Γ ⊂ PGLn+1(R) acts freely and properly discon-
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tinuously on Ω. Consider the elliptic tube Ωe. By the projective invariance of the
elliptic tube construction, the group Γ also acts on Ωe.

Proposition 5.1. The action of Γ on Ωe is free and properly discontinuous.

Proof. To see that the action of Γ on Ωe is free, suppose, by contradiction, that an
element γ ∈ Γ has a fixed point z ∈ Ωe \Ω. As γ is a real matrix, also the conjugate
point z̄ is fixed by γ, and also the unique complex line containing z and z̄. This
complex line is real (in the sense of conjugation-invariant) hence it intersects Ω in
a segment and it intersects Ωe in a disc. As γ does not fix any point of Ω, it acts
on the segment as a non-trivial translation. This action extends to the disc without
fixing any point of the disc, and this is a contradiction with the fact that z was a
fixed point.

Consider the group G of all bi-holomorphisms of Ωe, equipped with the compact-
open topology. As Ωe is Kobayashi-hyperbolic, the group G is a Lie group and it
acts properly on Ωe (see the introduction of [3] for a discussion of these properties).

As Γ acts properly discontinuously on Ω, it is discrete for the topology it has as
a subgroup of PGLn+1(R), that is the same it has as a subgroup of PGLn+1(C).
The topology of this latter group is the compact-open topology for its action on
CPn (see [1], subsect. 2.6). Hence the group Γ is discrete even with the topology it
has as a subgroup of G.

This implies that Γ is closed in G. In fact, by [8], chap. 2, 1.8, a subgroup H

of G is discrete if and only if there exists a neighborhood U of 1 in G such that
H ∩U = {1}. Now Γ is discrete, its closure Γ is again a subgroup, but Γ∩U = {1},
hence Γ is discrete itself, hence Γ = Γ.

As Γ is closed in G and the action of G on Ωe is proper, then also the action of
Γ on Ωe is proper. As Γ is discrete, the action is properly discontinuous.

We have seen that Γ acts freely and properly discontinuously on Ωe. Hence the
quotient Me = Ωe/Γ is a manifold and it has a natural complex projective structure.
We call the complex projective manifold Me the complexification of M . In the
remaining part of this section we describe the manifold Me. The inclusion Ω ⊂ Ωe

gives an inclusion M ⊂ Me. The complex conjugation on Ωe is compatible with
the action of Γ, hence it induces an anti-holomorphic involution on Me that has
M as locus of fixed points. The Kobayashi metric of Me is the quotient of the
Kobayashi metric on Ωe by the action of Γ, hence Me is a Kobayashi-hyperbolic
complex manifold. As a corollary of the theorems in the first part we obtain

Theorem 5.1. Let M be a convex real projective manifold. Then the Kobayashi
metric on the complexification Me is complete.

Proof. It follows from the observations made above and corollary 4.2.

Finally, we describe the topology of Me, by showing that it is homeomorphic in
a natural way with the tangent bundle to M .
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Theorem 5.2. Let M be a convex real projective manifold, Me be its complexifica-
tion and TM be the tangent bundle of M . Then there is a natural homeomorphism

f : Me→̃TM

whose restriction to M is the zero-section of TM .

Proof. Let M = Ω/Γ, where Ω ⊂ RPn is an open properly convex set and Γ ⊂
PGLn+1(R) is a subgroup acting freely and properly discontinuously on Ω. We
will give a natural homeomorphism f between Ωe and the tangent space of Ω,
TΩ = Ω× Rn, which is projectively equivariant, hence passes to the quotient.

If x ∈ Ω, then define f(x) ∈ TΩ as (x, 0). If z ∈ Ωe \ Ω, consider the complex
line Lz through z and z̄. Iz = Lz ∩ Ω is a segment, and ∆z = Lz ∩ Ωe is a disk
with diameter Iz. Consider now the geodesic for the Poincaré metric γz joining
z and z in ∆z. This is also a geodesic for the Kobayashi metric in Ωe. Define
xz = γz ∩ Ω = γz ∩ Iz. We will define f(z) as a vector in the tangent space at xz,
Txz

Ω. Since Ωe is a complex manifold, it has a complex structure J : TΩe → TΩe.
Let us denote by v ∈ Txz Ωe the unitary tangent vector to γ at xz (considering γ as
a curve from z to z̄). Since γ is a geodesic connecting two complex conjugate points,
Jv ∈ Txz Ω. Note that Jv is tangent to Iz, thus the complex structure allows us to
choose a direction on Iz at xz. Let lz = kΩe(z, xz) (the Kobayashi distance). Then
we can define

f(z) = (xz, lz · Jv) ∈ TΩ .

Note that the construction of f is projectively equivariant. We need to show
that f is a homeomorphism.

f is surjective. Let (x,w) ∈ TΩ. Consider the interval

I(x,w) = Ω ∩ {x+ tw | t ∈ R} ,

and the elliptic tube over it, ∆(x,w) = Ie(x,w). Up to a projective transformation we
may suppose ∆(x,w) = ∆, the unit disk, and x = 0. Consider the two imaginary
points z1, z2 such that k∆(x, zi) = ‖w‖. Then we have that f(z1) = (x,±w) and
f(z2) is the opposite point.

f is injective. Suppose z1, z2 ∈ Ωe are such that f(z1) = f(z2). Then the complex
geodesics γz1 and γz2 must coincide, they are at the same distance from the real
part Ω and on the same side (in the disk, where the real part disconnects), hence
z1 = z2.

f is continuous. Let us consider a sequence {zn}n∈N ⊂ Ωe with

lim
n→∞

zn = z∞ ∈ Ωe .

We have to show that

lim
n→∞

f(zn) = f(z∞) .

Note that the points zn converge to z∞ and the Kobayashi distances kΩe(zn, zn)
converge to kΩe(z∞, z∞).



June 17, 2010 18:15 WSPC/INSTRUCTION FILE TubesIJM2

14 D. Alessandrini and A. Saracco

First consider the case where z∞ ∈ Ω. Consider the points xzn = γzn ∩ Ω.
In this case we just need to estimate the distance kΩe(xzn

, z∞) ≤ kΩe(xzn
, zn) +

kΩe(zn, z∞) → 0.
Then consider the case where z∞ ∈ Ωe \Ω. In this case we can suppose that all

the points zn are in Ωe \Ω, then the disks ∆zn are well defined and they converge to
the disk ∆z∞ . All we need to prove is that the part of the geodesics γn connecting
zn and zn converge to the part of the geodesic γ∞ connecting z∞ and z∞. Consider
the limit set of the geodesics γn, defined as

Λ = {t ∈ TM | t = lim tk for some sequence tk ∈ γnk
}

Observe that Λ is connected since it is the limit set of connected sets in a finite
dimensional euclidean space, that z∞, z∞ ∈ Λ since they are the limit of the points
zk and zk respectively, and that Λ ⊂ ∆z∞ . We have to prove that that Λ coincides
with γ∞.

We first prove that Λ ⊂ γ∞. Arguing by contradiction, let us suppose that there
is a point ζ ∈ Λ \ γ∞. By the unicity of the geodesic in the disk this means

kΩe(z∞, z∞) = k∆∞(z∞, z∞) < k∆∞(z∞, ζ)+k∆∞(ζ, z∞) = kΩe(z∞, ζ)+kΩe(ζ, z∞) .

Since ζ ∈ Λ, this means that

lim
n→∞

kΩe(zn, zn) ≥ kΩe(z∞, ζ) + kΩe(ζ, z∞) > kΩe(z∞, z∞) ,

which is a contradiction. So Λ ⊂ γ∞.
Since Λ is a connected set contained into γ∞ which is a topological closed interval

and the endpoints of γ∞ belong to Λ, indeed Λ = γ∞.
We have proved that f is a continuous bijective map between two domains of

the same dimension. By Brouwer’s invariance of domain theorem, the map f is a
homeomorphism.
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