Cohomology and removable subsets

Alberto Saracco and Giuseppe Tomassini
Communicated by Giorgio Talenti

Abstract

Let X be a (connected and reduced) complex space. A q-collar of X is a bounded domain whose boundary is a union of a strongly q-pseudoconvex, a strongly q-pseudoconcave and two flat (i.e. locally zero sets of pluriharmonic functions) hypersurfaces. Finiteness and vanishing cohomology theorems obtained in [19, 20] for semi q-coronae are generalized in this context and lead to results on extension problems and removable sets for sections of coherent sheaves and analytic subsets.

Keywords. Cohomology, pseudoconvexity, analytic extension, removable singularities.
2010 Mathematics Subject Classification. Primary 32D15, 32D20; secondary 32C25, 32F10.

1 Introduction

Let X be a (connected and reduced) complex space. We recall that X is said to be strongly q-pseudoconvex in the sense of Andreotti-Grauert [3] if there exist a compact subset $K \subset X$ and a smooth function $\varphi: X \rightarrow \mathbb{R}, \varphi \geq 0$, which is strongly q-plurisubharmonic on $X \backslash K$ such that
(a) for every $c>0$ the subset

$$
B_{c}=\{x \in X: \varphi(x)<c\}
$$

is relatively compact in X.
Without loss of generality, we may suppose $\min _{X} \varphi=0$. If $K=\varnothing, X$ is said to be q-complete.

For technical reasons, we also assume that the set of the local minima of φ is discrete (cf. [6]) and that $\min _{K} \varphi>0$ whenever $K \neq \varnothing$. In particular, for every $c>0$ one has $\bar{B}_{c}=\{\varphi \leq 0\}$.

We remark that, for a space, being 1-complete is equivalent to being Stein.
This research was partially supported by the MIUR project "Proprietà geometriche delle varietà reali e complesse".

Replacing the condition (a) by
(a') for every $0<a<c$ the subset

$$
B_{a, c}=\{x \in X: a<\varphi(x)<c\}
$$

is relatively compact in X,
we obtain the notion of q-corona (see [3, 4]). A q-corona is said to be complete whenever $K=\varnothing$.

The extension problem for analytic objects (basically, sections of coherent sheaves, cohomology classes, analytic subsets) defined on q-coronae was studied by many authors (see e.g. [3, 12, 21, 22, 23]).

In $[19,20]$ we dealt with the larger class of the semi q-coronae which are defined as follows. Consider a strongly q-pseudoconvex space (or, more generally, a q corona) X, and a smooth function $\varphi: X \rightarrow \mathbb{R}$ displaying the q-pseudoconvexity of X. Let $B_{a, c} \subset X$ and let $h: X \rightarrow \mathbb{R}$ be a pluriharmonic function such that $K \cap\{h=0\}=\varnothing$. A connected component of $B_{a, c} \backslash\{h=0\}$ is, by definition, a semi q-corona. If X is a complex manifold, the zero set $\{h=0\}$ can be replaced by a Levi flat hypersurface.

Finiteness and vanishing cohomology theorems proved there lead to results of this type: depending on q, analytic objects given near the convex part of the boundary of a semi q-corona fill in the hole.

In this paper we consider a more general situation. Let X be a strongly q-pseudoconvex space. Then $C=B_{a, c}=B_{c} \backslash \bar{B}_{a}$ is a q-corona (with exhaustion function $\left.\psi=\frac{1}{c-\varphi}-\frac{1}{c-a}\right)$.

Let Σ_{1}, Σ_{2} be two Levi flat hypersurfaces in a neighbourhood of \bar{B}_{c} such that

$$
B_{c} \cap \Sigma_{1} \cap \Sigma_{2}=\Sigma_{1} \cap K=\Sigma_{2} \cap K=\varnothing
$$

and $\Sigma_{1} \cap B_{c} \neq \varnothing, \Sigma_{2} \cap B_{c} \neq \varnothing$ are nonempty connected subsets. We also assume that $\Sigma_{1}=\left\{h_{1}=0\right\}, \Sigma_{2}=\left\{h_{2}=0\right\}$ where h_{1}, h_{2} are pluriharmonic on \bar{W}_{1}, \bar{W}_{2} where $W_{1} \Subset B_{c^{\prime}}, W_{2} \Subset B_{c^{\prime}}, c^{\prime}>c$, are neighbourhoods of $\Sigma_{1} \cap B_{c}$, $\Sigma_{2} \cap B_{c}$ respectively. Let Q be the open subset of B_{c} bounded by $\Sigma_{1} \cap \bar{B}_{c}$, $\Sigma_{2} \cap \bar{B}_{c}$ and a part of $\mathrm{b} B_{c}$. We assume that Q is connected and that $B_{c} \backslash \bar{Q}$ has two connected components, B_{+}and B_{-}, and define $C_{0}=Q \cap C, C_{+}=B_{+} \cap C$, $C_{-}=B_{-} \cap C$. The domain C_{0} is called a q-collar (see Figure 1). A q-collar is said to be complete if $K=\varnothing$. Note that C_{+}and C_{-}are semi q-coronae.

Observe that a q-collar is a difference of two pseudoconvex spaces. Indeed, consider $1 /(c-\varphi)$ which is a strongly q-plurisubharmonic exhaustion function for B_{c}. Let $\varepsilon>0$ be such that

$$
\left\{x \in W_{1}: h_{1}(x) \leq \varepsilon\right\} \cap B_{c} \Subset W
$$

Figure 1. A q-collar $C_{0}=Q \cap\left(B_{c} \backslash \bar{B}_{a}\right)$. In spite of the figure, C_{0} is connected.
and let C be the connected component containing $\bar{W} \cap\{h=0\}$. Define \widehat{h} by $\widehat{h}(x)=h(x) / \varepsilon$ if $x \in C$ and $h(x) \leq \varepsilon$ and $\widehat{h}(x)=1$ otherwise and define $\psi_{1}=-\log \left(\widehat{h}_{1}\right)^{2}$. Then ψ_{1} is plurisubharmonic and positive on $\left\{0<h_{1}<\varepsilon\right\}$, constant $(=0)$ on $B_{c} \backslash\left\{0<h_{1}<\varepsilon\right\}$ and $\psi_{1} \rightarrow+\infty$ when $h_{1} \rightarrow 0$. Then the function

$$
\phi_{1}= \begin{cases}\psi_{1} \exp \left(-1 / \psi_{1}^{2}\right), & \text { if } \psi_{1}>0 \\ 0, & \text { if } \psi_{1} \leq 0\end{cases}
$$

is smooth, plurisubharmonic on $B_{c} \backslash\left\{h_{1}=0\right\}$ and $\phi_{1} \rightarrow+\infty$ when $h_{1} \rightarrow 0$. Arguing in the same way, starting from h_{2} we construct a function ϕ_{2} which is smooth, plurisubharmonic on $B_{c} \backslash\left\{h_{2}=0\right\}$ and $\phi_{2} \rightarrow+\infty$ when $h_{2} \rightarrow 0$. It follows that

$$
\Phi=\frac{1}{c-\varphi}+\phi_{1}+\phi_{2}
$$

is an exhaustion function for Q which is strongly q-plurisubharmonic on $Q \backslash K$.
In order to get the conclusion it is sufficient to apply the same argument starting from B_{a}.

The results on the cohomology of q-collars, generalizing the ones proved in [19, 20], are established in the first part of the paper (see Section 2). They are applied in Section 3 to study removability. Removability for functions was extensively studied by many authors (see e.g. [24, 17, 14, 9, 16, 18]). We are dealing with removability for sections of coherent sheaves and analytic sets. The main results are contained in Theorems 3.1, 3.3, 3.5, 3.6.

2 Some cohomology

This section is dealing with cohomology of q-collars and some application to extension of sections of coherent sheaves.

2.1 Closed q-collars

Let C_{0} be a q-collar in a strongly q-pseudoconvex space X.
Theorem 2.1. Let $\mathcal{F} \in \operatorname{Coh}\left(B_{c}\right)$ and

$$
p(\mathcal{F})=\inf _{x \in B_{c}} \operatorname{depth} \mathscr{F}_{x} .
$$

Then, for $q-1 \leq r \leq p(\mathscr{F})-q-2$, the homomorphism

$$
H^{r}(\bar{Q}, \mathcal{F}) \oplus H^{r}(\bar{C}, \mathcal{F}) \longrightarrow H^{r}\left(\bar{C}_{0}, \mathcal{F}\right)
$$

(all closures are taken in B_{c}), defined by $(\xi \oplus \eta) \mapsto \xi_{\mid \bar{C}_{0}}-\eta_{\mid \bar{C}_{0}}$, has finite codimension.

If $\Sigma_{1}=\left\{h_{1}=0\right\}, \Sigma_{2}=\left\{h_{2}=0\right\}$ where h_{1} and h_{2} are pluriharmonic functions near $\Sigma_{1} \cap \bar{B}_{c}$ and $\Sigma_{2} \cap \bar{B}_{c}$ respectively, then

$$
\operatorname{dim}_{\mathbb{C}} H^{r}\left(\bar{C}_{0}, \mathscr{F}\right)<\infty
$$

for $q \leq r \leq p(\mathcal{F})-q-2$.
Proof. Consider the Mayer-Vietoris sequence applied to the closed sets \bar{Q} and \bar{C}

$$
\begin{align*}
\cdots \rightarrow H^{r}(\bar{Q} \cup \bar{C}, \mathcal{F}) & \rightarrow H^{r}(\bar{Q}, \mathcal{F}) \oplus H^{r}(\bar{C}, \mathcal{F}) \\
& \stackrel{\delta}{\rightarrow} H^{r}\left(\bar{C}_{0}, \mathcal{F}\right) \rightarrow H^{r+1}(\bar{Q} \cup \bar{C}, \mathcal{F}) \rightarrow \cdots, \tag{2.1}
\end{align*}
$$

$\delta(\xi \oplus \eta)=\xi_{\mid \bar{C}_{0}}-\eta_{\mid \bar{C}_{0}}$. We have

$$
\bar{Q} \cup \bar{C}=B_{c} \backslash U
$$

where $U=B_{a} \backslash\left(B_{a} \cap \bar{Q}\right)$. Thus U is q-complete and consequently the groups of compact support cohomology $H_{c}^{r}(U, \mathcal{F})$ are zero for $q \leq r \leq p(\mathcal{F})-q$ (see [3, Proposition 25]).

From the exact sequence of compact support cohomology

$$
\cdots \rightarrow H_{c}^{r}(U, \mathscr{F}) \rightarrow H^{r}\left(B_{c}, \mathscr{F}\right) \rightarrow H^{r}\left(B_{c} \backslash U, \mathscr{F}\right) \rightarrow H_{c}^{r+1}(U, \mathscr{F}) \rightarrow \cdots
$$

it follows that

$$
\begin{equation*}
H^{r}\left(B_{c}, \mathcal{F}\right) \xrightarrow{\sim} H^{r}\left(B_{c} \backslash U, \mathscr{F}\right), \tag{2.2}
\end{equation*}
$$

for $q \leq r \leq p(\mathcal{F})-q-1$.

Since B_{c} is q-pseudoconvex,

$$
\operatorname{dim}_{\mathbb{C}} H^{r}\left(B_{c}, \mathscr{F}\right)<\infty
$$

for $q \leq r$ (see [3, Théorème 16]), and so

$$
\operatorname{dim}_{\mathbb{C}} H^{r}\left(B_{c} \backslash U, \mathscr{F}\right)<\infty
$$

for $q \leq r \leq p(\mathcal{F})-q-1$.
From (2.1) we see that

$$
\operatorname{dim}_{\mathbb{C}} H^{r}\left(B_{c} \backslash U, \mathcal{F}\right)=\operatorname{dim}_{\mathbb{C}} H^{r}(\bar{Q} \cup \bar{C}, \mathcal{F})
$$

is greater than or equal to the codimension of the homomorphism δ. This proves that the image of the homomorphism

$$
H^{r}(\bar{Q}, \mathcal{F}) \oplus H^{r}(\bar{C}, \mathcal{F}) \longrightarrow H^{r}\left(\bar{C}_{0}, \tilde{\mathcal{F}}\right)
$$

(all closures are taken in B_{c}), defined by $(\xi \oplus \eta) \mapsto \xi_{\mid \bar{C}_{0}}-\eta_{\mid \bar{C}_{0}}$, has finite codimension provided that $q-1 \leq r \leq p(\mathcal{F})-q-2$, proving the first assertion of the theorem.

If $\Sigma_{1}=\left\{h_{1}=0\right\}, \Sigma_{2}=\left\{h_{2}=0\right\}$ are as in the second part of the statement, then, since $K \cap\left(\Sigma_{1} \cup \Sigma_{2}\right)=\varnothing, \bar{Q}$ has a fundamental system of neighborhoods which are q-pseudoconvex spaces, thus, by virtue of [3, Théorème 11] we have

$$
\operatorname{dim}_{\mathbb{C}} H^{r}(\bar{Q}, \mathscr{F})<\infty
$$

for $r \geq q$. On the other hand, \bar{C} is a q-corona, so

$$
\operatorname{dim}_{\mathbb{C}} H^{r}(\bar{C}, \mathscr{F})<\infty
$$

for $q \leq r \leq p(\mathcal{F})-q-1$ in view of [4, Theorem 3].
Summarizing, for $q \leq r \leq p(\mathscr{F})-q-1$ the vector space $H^{r}(\bar{Q}, \mathscr{F}) \oplus$ $H^{r}(\bar{C}, \mathcal{F})$ has finite dimension and for $q-1 \leq r \leq p(\mathscr{F})-q-2$ its image in $H^{r}\left(\bar{C}_{0}, \mathcal{F}\right)$ has finite codimension. Thus, for $q \leq r \leq p(\mathcal{F})-q-2, H^{r}\left(\bar{C}_{0}, \mathcal{F}\right)$ has finite dimension.

Theorem 2.2. Assume that $\Sigma_{1}=\left\{h_{1}=0\right\}, \Sigma_{2}=\left\{h_{2}=0\right\}$ where h_{1} and h_{2} are pluriharmonic functions near $\Sigma_{1} \cap \bar{B}_{c}$ and $\Sigma_{2} \cap \bar{B}_{c}$ respectively, and $\bar{Q} \cap K=\varnothing$. Then

$$
H^{r}(\bar{C}, \mathcal{F}) \xrightarrow{\sim} H^{r}\left(\bar{C}_{0}, \mathcal{F}\right)
$$

for $q \leq r \leq p(\mathcal{F})-q-2$ and the homomorphism

$$
\begin{equation*}
H^{q-1}(\bar{Q}, \mathscr{F}) \oplus H^{q-1}(\bar{C}, \mathscr{F}) \longrightarrow H^{q-1}\left(\bar{C}_{0}, \mathscr{F}\right) \tag{2.3}
\end{equation*}
$$

is surjective for $p(\mathcal{F}) \geq 2 q+1$.

If \bar{B}_{+}is a 1 -complete space and $p(\mathcal{F}) \geq 3$, the homomorphism

$$
H^{0}(\bar{Q}, \mathcal{F}) \longrightarrow H^{0}\left(\bar{C}_{0}, \mathcal{F}\right)
$$

is surjective.
Proof. By hypothesis \bar{Q} has a fundamental system of neighborhoods which are q-complete spaces, so $H^{r}(\bar{Q}, \mathcal{F})=\{0\}$ for $q \leq r$ (see [3, Corollaire, p. 250]). From (2.2) it follows that $H^{r}(\bar{Q} \cup \bar{C}, \mathcal{F})=\{0\}$ for $q \leq r \leq p(\mathcal{F})-q-1$. Thus, from the Mayer-Vietoris sequence (2.1) we derive the isomorphism

$$
H^{r}(\bar{C}, \mathcal{F}) \xrightarrow{\sim} H^{r}\left(\bar{C}_{0}, \mathcal{F}\right)
$$

for $q \leq r \leq p(\mathcal{F})-q-2$ and that the homomorphism (2.3) is surjective if $p(\mathcal{F}) \geq 2 q+1$.

In particular, if $q=1$ and $p(\mathcal{F}) \geq 3$, the homomorphism

$$
H^{0}(\bar{Q}, \mathscr{F}) \oplus H^{0}(\bar{C}, \mathcal{F}) \longrightarrow H^{0}\left(\bar{C}_{0}, \mathcal{F}\right)
$$

is surjective, i.e. every section $\sigma \in H^{0}\left(\bar{C}_{0}, \mathscr{F}\right)$ is a difference $\sigma_{1}-\sigma_{2}$ of two sections $\sigma_{1} \in H^{0}(\bar{Q}, \mathcal{F}), \sigma_{2} \in H^{0}(\bar{C}, \mathcal{F})$. Since B_{a} is Stein, the cohomology group with compact supports $H_{c}^{1}\left(B_{a}, \mathcal{F}\right)$ is zero, and so the Mayer-Vietoris compact support cohomology sequence implies that the restriction homomorphism

$$
H^{0}\left(\bar{B}_{c}, \mathcal{F}\right) \longrightarrow H^{0}\left(\bar{B}_{c} \backslash B_{a}, \mathcal{F}\right)=H^{0}(\bar{C}, \mathcal{F})
$$

is surjective, hence $\sigma_{2} \in H^{0}(\bar{C}, \mathscr{F})$ is the restriction of $\widetilde{\sigma}_{2} \in H^{0}\left(B_{c}, \mathcal{F}\right)$. So σ is the restriction to \bar{C}_{0} of $\left(\sigma_{1}-\widetilde{\sigma}_{2 \mid \bar{B}_{+}}\right) \in H^{0}(\bar{Q}, \mathcal{F})$, and the restriction homomorphism is surjective.

Corollary 2.3. Let $q=1$ and depth $\mathcal{O}_{x} \geq 3$ for every $x \in B_{c}$. Then all holomorphic functions on \bar{C}_{0} extend holomorphically on \bar{Q}.

2.2 Open q-collars

Keeping the same notations as above consider an open q-collar C_{0}. For the sake of simplicity we assume that B_{c} is q-complete. We also assume that $\Sigma_{1}=\left\{h_{1}=0\right\}$, $\Sigma_{2}=\left\{h_{2}=0\right\}$ where h_{1} and h_{2} are pluriharmonic functions on open neighbourhoods U_{1} and U_{2} of $\Sigma_{2} \cap \bar{B}_{c}$ and $\Sigma_{1} \cap \bar{B}_{c}$ respectively.

Theorem 2.4. Let B_{c} be 1-complete and \mathcal{F} be a coherent sheaf on B_{c} satisfying depth $\mathcal{F}_{x} \geq 3$ for every $x \in B_{c}$. Then the homomorphism

$$
H^{0}(Q, \mathscr{F}) \longrightarrow H^{0}\left(C_{0}, \mathcal{F}\right)
$$

is surjective.

Proof. Let $s \in H^{0}\left(C_{0}, \mathcal{F}\right)$. Fix a couple of positive numbers $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)$ small enough such that $\Sigma_{i, \varepsilon_{i}}$ defined by $\underline{\Sigma}_{i, \varepsilon_{i}}=\left\{h_{i}=\varepsilon_{i}\right\}$ are connected hypersurfaces, $\Sigma_{i, \varepsilon_{i}} \cap \bar{B}_{c} \cap \bar{Q} \neq \varnothing$ and $\Sigma_{i, \varepsilon_{i}} \cap \bar{B}_{c} \subset U_{i}$, for $i=1,2$.

Consider the open subset Q_{ε} of Q bounded by the hypersurfaces $\Sigma_{i, \varepsilon_{i}} \cap \bar{B}_{c}$ and by a part of $\mathrm{b} B_{c}$, and set $C_{0, \varepsilon}=Q_{\varepsilon} \cap C_{0}$. In view of Theorem 2.2 there exists a section $\tilde{s}_{\varepsilon} \in H^{0}\left(\bar{Q}_{\varepsilon}, \mathcal{F}\right)$ which extends $s_{\mid C_{0, \varepsilon}}$. Now observe that the connected component W of $B_{c} \backslash \Sigma_{1}$ containing Σ_{2} is Stein. So there exists a strongly pseudoconvex domain $\Omega \Subset W$ such that the domain D_{ε} bounded by $\Sigma_{2, \varepsilon_{2}} \cap \bar{B}_{c}$, $\Sigma_{2} \cap \bar{B}_{c}$ and by a part of $\mathrm{b} B_{c}$ is relatively compact in Ω. By Theorem 5 of [19] the section \tilde{s}_{ε} extends on $\Omega \cap Q$. Thus s extends on Q_{ε}. In order to conclude the proof we argue as before with respect to the hypersurfaces $\Sigma_{1, \varepsilon_{1}}$ and Σ_{1}.

In particular, we get the extension of holomorphic functions:
Corollary 2.5. If B_{c} is a 1-complete space and depth $\mathcal{F}_{x} \geq 3$ for every $x \in B_{c}$, all holomorphic functions on C_{0} uniquely extend on Q.

Corollary 2.6. Let X be a Stein space. Let $\Sigma_{1}=\left\{h_{1}=0\right\} \subset X$ and $\Sigma_{2}=$ $\left\{h_{2}=0\right\} \subset X$ be the zero set of two pluriharmonic functions, and let S be a bounded real hypersurface of X with boundary $b S \subset \Sigma_{1} \cup \Sigma_{2}$ such that $S \cap \Sigma_{1}=$ $b S \cap \Sigma_{1}=b A_{1}$ and $S \cap \Sigma_{2}=b S \cap \Sigma_{2}=b A_{2}$ where A_{1} is an open set in Σ_{1} and A_{2} is an open set in Σ_{2}. Let $D \subset X$ be the relatively compact domain bounded by $S \cup A_{1} \cup A_{2}$ and \mathcal{F} be a coherent sheaf on a neighbourhood of \bar{D} with depth $\mathcal{F}_{x} \geq 3$ for all $\in \bar{D}$. Then every section of \mathcal{F} on S extends to D.

2.3 Finiteness of cohomology

Results on the cohomology of q-collars obtained in the preceding section concern coherent sheaves defined in larger domains. For the applications that we have in mind it is needed to study cohomology of coherent sheaves which are defined just on collars. This can be done by the same methods used in [20] for semi q-coronae. We briefly sketch the main points of proofs given there focusing on the case $q=1$. The extension for an arbitrary q demands only technical adjustments. Keeping the same notations as in Section 1 let

$$
C_{0}=Q \cap\left(B_{c} \backslash \bar{B}_{a}\right)=Q \cap B_{a, c}=Q \cap\{x \in X: a<\varphi(x)<c\}
$$

be an open 1-collar of a Stein space X (see Figure 1, page 1095). Q is the subdomain of B_{c} bounded by the two Levi flat hypersurfaces $\Sigma_{1}=\left\{h_{1}=0\right\}$, $\Sigma_{2}=\left\{h_{2}=0\right\}$. Σ_{1} and Σ_{2} are defined on a neighbourhood of \bar{B}_{c} where h_{1} and h_{2} are pluriharmonic functions near Σ_{1} and Σ_{2} respectively. Thus Q is a

Stein domain. By $\Sigma_{1}^{0}, \Sigma_{2}^{0}$ we denote the parts of b C_{0} contained in Σ_{1} and Σ_{2}, and by F_{1}^{0}, F_{2}^{0} the 1-pseudoconvex and the 1-pseudoconcave part respectively. Since Q is Stein, there exist two families of 1-pseudoconvex hypersurfaces $\left\{\Sigma_{1}^{\varepsilon}\right\},\left\{\Sigma_{2}^{\varepsilon}\right\}$, $\varepsilon \searrow 0$, in a neighbourhood of \bar{Q}, with the following properties:
(1) $\Sigma_{1}^{\varepsilon}, \Sigma_{2}^{\varepsilon}$ bound a strip $Q_{\varepsilon} \subset Q$ and $\Sigma_{1}^{\varepsilon} \rightarrow \Sigma_{1}, \Sigma_{2}^{\varepsilon} \rightarrow \Sigma_{2}$ as $\varepsilon \searrow 0$;
(2) defining $C_{0}^{\varepsilon}=Q_{\varepsilon} \cap B_{a+\varepsilon, c-\varepsilon}$ we obtain an exhaustion $\left\{C_{0}^{\varepsilon}\right\}$ of the collar C_{0}.

The bump lemma and the approximation theorem hold for the closed subsets $\bar{C}_{0}^{\varepsilon}$ with the same proof as in [20, Lemma 3.3, 3.9] and this enables us to the following results. Assume that depth $\mathcal{F}_{x} \geq 3$ for x near to the pseudoconcave part of the boundary of C_{0}; then
(3) there exists ε_{0} sufficiently small such that if $\varepsilon<\varepsilon_{0}$ the cohomology spaces $H^{1}\left(\bar{C}_{\varepsilon}^{+}, \mathcal{F}\right)$ are finite dimensional;
(4) if $\varepsilon<\varepsilon_{0}$ there exists $\varepsilon_{1}<\varepsilon$ such that

$$
H^{1}\left(C_{\varepsilon^{\prime}}^{+}, \mathscr{F}\right) \simeq H^{1}\left(\bar{C}_{\varepsilon}^{+}, \mathcal{F}\right)
$$

for every $\left.\varepsilon^{\prime} \in\right] \varepsilon_{1}, \varepsilon[$.
(3) and (4) have an important consequence, namely that for \mathcal{F} Theorem A of Oka-Cartan-Serre holds in the following form (see [20, Corollary 4.2]):
(5) if $\varepsilon, \varepsilon^{\prime}$ are as in (4), for every compact subset K of $C_{\varepsilon^{\prime}}^{+} \backslash\{\varphi>c-\varepsilon\}$ there exist sections $s_{1}, \ldots, s_{k} \in H^{0}\left(C_{\varepsilon^{\prime}}^{+}, \mathcal{F}\right)$ which generate \mathcal{F}_{x} for every $x \in K$.

As an application we get the following extension theorem for analytic subsets.
Theorem 2.7. Let X be a Stein space, $C_{0}=Q \cap\left(B_{c} \backslash \bar{B}_{a}\right) \subset X$ be a complete 1-collar and Y be a closed analytic subset of C_{0} such that depth $\mathcal{O}_{Y, x} \geq 3$ for x near $\{\varphi=a\}$. Then Y extends to a closed analytic subset on Q.

Proof. Taking into account (5) the proof runs as in [20, Theorem 4.3 and Corollary 4.4].

3 Removable sets

The notion of removable sets was originally given with respect to holomorphic functions and the removability problem was extensively studied (see e.g. [24, 17, $14,9,16]$, and the recent survey [18]). Here we want to study the same problem with respect to larger classes of analytic objects, namely the classes of sections of coherent sheaves, of cohomology classes and of analytic sets.

Let X be a complex space, D be a bounded domain. Let \mathscr{F} be a coherent sheaf on a neighbourhood of \bar{D}. A subset L of the boundary $\mathrm{b} D$ of D is said to be removable for (the sections of) \mathcal{F} or for the cohomology classes with values in \mathcal{F}, of a certain degree r, if every section $s \in \Gamma(\mathrm{~b} D \backslash L, \mathcal{F})$ or cohomology class $\omega \in H^{r}(\mathrm{~b} D \backslash L, \mathcal{F})$ extends by $\tilde{s} \in \Gamma(\bar{D} \backslash L, \mathcal{F})$ or by $\widetilde{\omega} \in H^{r}(\bar{D} \backslash L, \mathcal{F})$ respectively.

Similarly, the subset L is said to be removable for the (respectively, a given) class of analytic subsets if every analytic subset (of a given class of analytic subsets) defined on a neighbourhood of $\mathrm{b} D \backslash L$ extends by an analytic subset of $\bar{D} \backslash L$.

3.1 Coherent sheaves

Given a coherent sheaf \mathscr{F} on a complex space X let us denote by $\operatorname{Tor}(\mathcal{F})$ the torsion of $\mathcal{F} ; \operatorname{Tor}(\mathcal{F})$ is the coherent subsheaf of \mathcal{F} whose stalk at a point $x \in X$ is

$$
\operatorname{Tor}(\mathcal{F})_{x}=\left\{s_{x} \in \mathcal{F}_{x}: \lambda_{x} s_{x}=0 \text { for some } \lambda \in \mathcal{O}_{x}, \lambda \neq 0\right\}
$$

It can be proved (see [2]) that the topology of \mathcal{F} is Hausdorff if and only if \mathscr{F} has no torsion, i.e. $\operatorname{Tor}(\mathscr{F})=\{0\}$. We denote by $T(\mathscr{F})$ the analytic subset $\operatorname{supp} \operatorname{Tor}(\mathcal{F})$.

Given a bounded domain $D \subset X$ let $\mathcal{A}(D)$ be the algebra $C^{0}(\bar{D}) \cap \mathcal{O}(D)$ and for every compact $L \subset \bar{D}$ let

$$
\widehat{L}=\left\{x \in \bar{D}:|f(z)| \leq \max _{L}|f|, \forall f \in \mathcal{A}(D)\right\}
$$

be the $\mathcal{A}(D)$-envelope of L. We want to prove the following

Theorem 3.1. Let X be an n-dimensional manifold, D a bounded pseudoconvex domain in X with a connected smooth boundary and L a compact subset of $b D$ such that $\mathrm{b} D \backslash L$ is a non-empty strongly Levi convex hypersurface. Let \mathcal{F} be a coherent sheaf on X satisfying
(1) depth $\mathcal{F}_{x} \geq 3$ for every $x \in \bar{D}$;
(2) $\operatorname{dim}_{\mathbb{C}} T(\mathcal{F}) \cap \bar{D} \leq n-2$.

Let U be an open neighborhood of $\bar{D} \backslash(\widehat{L} \cap b D)$ or of $X \backslash(D \cup(\widehat{L} \cap b D))$. Then every section of \mathcal{F} on $U \backslash \bar{D}$ or $U \backslash(X \backslash D)$ uniquely extends to a section on $U \backslash \widehat{L}$ or $D \backslash \widehat{L}$. In particular, if $\widehat{L}=L$, then L is removable for \mathcal{F}.

Proof. Before starting the proof, observe that $D \backslash \widehat{L} \subset D$ has no relatively compact (in D) connected components. Indeed, suppose $K \subset D$ is a relatively compact (in D) connected component of $D \backslash \widehat{L}$. Then $b K \subset \widehat{L}$ and by the maximum principle, for every $f \in A(D)$,

$$
\max _{K}|f| \leq \max _{b K}|f| \leq \max _{\widehat{L}}|f|=\max _{L}|f|
$$

which means $K \subset \widehat{L}$, a contradiction.
The uniqueness is a consequence of the Kontinuitätsatz and of hypothesis (1). Indeed let s_{1}, s_{2} be sections of \mathcal{F} on $D \backslash \hat{L}$ such that $s_{1} \equiv s_{2}$ near $\mathrm{b} D \backslash L$. In view of the hypothesis (1), the support of $s_{1}-s_{2}$ is an analytic subset A of $D \backslash \widehat{L}$ with no 0-dimensional irreducible component (see [5, Théorème 3.6 (a), p. 46]). Let A_{1} be an irreducible component of A. Since $\mathrm{b} D \backslash L$ is strongly Levi convex, in view of the Kontinuitätsatz A_{1} cannot touch $\mathrm{b} D \backslash L$ so $\bar{A}_{1} \cap \mathrm{~b} D \equiv \bar{A}_{1} \cap L$. Let $x \in A_{1}$. Since $x \notin \widehat{L}$, there exists $f \in \mathcal{A}(D)$ such that $\max _{L}|f|<|f(x)|$. Consider an exhaustion $W_{1} \Subset W_{2} \Subset \cdots$ by relatively open subsets of $A_{1}, x \in W_{1}$. By virtue of the maximum principle, for every k there exists a point $x_{k} \in \mathrm{~b} W_{k}$ such that $|f(x)|<\left|f\left(x_{k}\right)\right|$. Then (passing if necessary to a subsequence) we have $x_{k} \rightarrow y \in \widehat{L}$ as $k \rightarrow+\infty$ and consequently $|f(x)| \leq|f(y)| \leq \max _{L}|f|$, a contradiction.

We now need to show the existence of the extension. In order to prove the extension we consider just the case that U is an open neighborhood of $\bar{D} \backslash L$ or $X \backslash(D \cup L)$ and $\sigma \in \mathscr{F}(U \backslash \bar{D})$, the proof in the other one being similar. In view of the hypothesis (1), given a point $x \in D \backslash \widehat{L}$ there exists $f=f_{x} \in \mathcal{A}(D)$, $f=u+i v, u=u_{x}, v=v_{x}$ real-valued functions, such that $f(x)=u(x)=1$ $\max _{L}|f|<1$; in particular $\max _{L}|u|<1$. Then, if $\varepsilon=\varepsilon_{x}>0$ is sufficiently small and $C=C_{x}=\{u \geq 1-\varepsilon\}$, we have $C \cap L=\varnothing$. Let $V=V_{x}$ be an open neighborhood of L such that $C \cap \bar{V}=\varnothing$. Since $\mathrm{b} D \backslash L$ is strongly pseudoconvex, there exists a pseudoconvex domain $D_{1}=D_{1, x}$ with a smooth boundary satisfying the following properties:
(i) $D \subset D_{1}, \bar{D}_{1} \backslash D \subset U$;
(ii) $\mathrm{b} D_{1} \cap \mathrm{~b} D \subset V \cap \mathrm{~b} D$;
(iii) $\mathrm{b} D_{1}$ is strongly pseudoconvex at the points of $\mathrm{b} D_{1} \backslash \mathrm{~b} D_{1} \cap \mathrm{~b} D$.

Since D_{1} is Stein there exists a strongly pseudoconvex $D_{2}=D_{2, x} \Subset D_{1}$ which contains the compact subset $\bar{D} \backslash(V \cap D)$ (hence also $\left.x \in D_{2}\right)$ and such that $\mathrm{b}\left(D_{2} \cap D\right) \backslash \mathrm{b} D \Subset V$ (see Figure 2).

The boundary of $D_{3}=D_{3, x}=D_{2} \cap D$ is piecewise smooth but we may regularize it along $\mathrm{b} D_{2} \cap \mathrm{~b} D$, thus we may assume that D_{3} is a smooth strongly

Figure 2. Construction of the three domains D_{1}, D_{2} and $D_{3}=D_{2} \cap D$.
pseudoconvex domain $D_{3}=\{\varrho<0\}$ where $\varrho=\varrho_{x}$ is a strongly plurisubharmonic function on a neighbourhood of \bar{D}_{3} and $d \varrho(z) \neq 0$ along $\mathrm{b} D_{3}$. By the approximation theorem of Kerzman (see [15]) there exists an open neighbourhood $W=W_{x}$ of \bar{D}_{3} such that $\mathcal{O}(W)$ is a dense subalgebra of $\mathcal{A}\left(D_{3}\right)$. It follows that we may assume that
(a) $\sigma \in \mathscr{F}\left(\mathrm{b} D_{3} \cap\{u>1-\varepsilon\}\right)$ where u is pluriharmonic near \bar{D}_{3};
(b) $\{u=1-\varepsilon\}$ is smooth, intersects $\mathrm{b} D_{3}$ transversally, and

$$
\Sigma=\Sigma_{x}=\{u=1-\varepsilon\} \cap D_{3}
$$

has a finite number of connected components $\Sigma^{1}, \ldots, \Sigma^{k}$, each of them Levi flat.

Each $\Sigma^{l}, l=1, \ldots, k$, cuts D_{3} in different connected components. Since $V \subset\{u<1-\varepsilon\}$ and $u(x)=1, x$ and V lie in different connected components of $\bar{D} \backslash \Sigma$. Let us call $\Omega=\Omega_{x}$ a connected component containing x but not V.

Observe that Σ cuts a small neigbourhood of D_{3} in a q-collar or a semi q corona. In view of the extension theorem proved in [19], there exists a unique section $\sigma_{x} \in \mathscr{F}(\Omega)$ which extends σ. Hence we are able to extend σ to a section defined in x, for any $x \notin \hat{L}$.

In order to finish the proof we have to show that if σ_{x}, σ_{y} are two such extensions, defined on Ω_{x} and Ω_{y} respectively, then $\sigma_{x}=\sigma_{y}$ on $\Omega_{x} \cap \Omega_{y}$.

Notice that every connected component of

$$
\Sigma_{x y}=\left\{u_{x}=1-\varepsilon_{x}\right\} \cap\left\{u_{y}=1-\varepsilon_{y}\right\}
$$

meets the boundary. Indeed, suppose not, then there is a compact component of $\Sigma_{x y}$, which implies that the pluriharmonic function u_{x} has an inner maximum or minimum on the Levi flat hypersurface $\left\{u_{y}=1-\varepsilon_{y}\right\}$, which is a contradiction. Thus $\sigma_{x}=\sigma_{y}$ on $\Omega_{x} \cap \Omega_{y}$ trivially holds if \mathcal{F} is locally isomorphic to a subsheaf of \mathcal{O}^{N}, in particular if \mathcal{F} is locally free.

In our situation consider the difference $\tau=\sigma_{x}-\sigma_{y}$ on $\Omega_{x} \cap \Omega_{y}$. Since \mathcal{F} is Hausdorff on $D \backslash T, T=T(\mathcal{F})$, we have $\operatorname{supp} \tau \subset T$. Let $x \in \operatorname{supp} \tau$. If $B \subset\left(\Omega_{x} \cap \Omega_{y}\right)$ is a sufficiently small Stein neighbourhood of x, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}^{p_{d}} \rightarrow \cdots \rightarrow \mathcal{O}^{p_{1}} \xrightarrow{\psi} \mathcal{O}^{p_{0}} \xrightarrow{\varphi} \mathcal{F} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

with $n-d \geq 3$ by hypothesis, and from this we derive the exact sequence

$$
H^{0}\left(B, \mathcal{O}^{p_{1}}\right) \xrightarrow{\psi} H^{0}\left(B, \mathcal{O}^{p_{0}}\right) \xrightarrow{\varphi} H^{0}(B, \mathcal{F}) \longrightarrow 0
$$

where ψ, φ are defined by matrices $\left(\psi_{i j}\right),\left(\varphi_{r s}\right)$ of holomorphic functions on B. Then $\tau=\varphi(s), s=\left(s_{1}, \ldots, s_{q}\right) \in H^{0}\left(B, \mathcal{O}^{p_{0}}\right)$ and $\varphi\left(s_{y}\right)=0$ for every $y \in B \backslash T$; consequently

$$
s_{\mid B \backslash T} \in H^{0}(B \backslash T, \operatorname{Ker} \varphi)=H^{0}(B \backslash T, \operatorname{Im} \psi)
$$

Because of (3.1) we have the exact sequence

$$
0 \rightarrow \mathcal{O}^{p_{d}} \rightarrow \cdots \rightarrow \mathcal{O}^{p_{2}} \rightarrow \operatorname{Ker} \psi \rightarrow 0
$$

proving that

$$
\text { depth } \operatorname{Ker} \psi_{x} \geq 5 \quad \text { if } n \geq 5
$$

(Ker $\psi=0$ if $n=3$ and $\operatorname{Ker} \psi$ is locally free if $n=4$). It follows that the first and second local cohomology groups of Ker ψ with support T vanish,

$$
H_{T}^{1}(B, \operatorname{Ker} \psi)=H_{T}^{2}(B, \operatorname{Ker} \psi)=0
$$

and consequently, from the local cohomology exact sequence, that

$$
H^{1}(B \backslash T, \operatorname{Ker} \psi)=0
$$

The exact sequence

$$
0 \longrightarrow \operatorname{Ker} \psi \longrightarrow \mathcal{O}^{p_{0}} \xrightarrow{\psi} \operatorname{Im} \psi \longrightarrow 0
$$

now implies that the homomorphism

$$
H^{0}\left(B \backslash T, \mathcal{O}^{p_{1}}\right) \xrightarrow{\operatorname{Ker} \psi} H^{0}(B \backslash T, \operatorname{Im} \psi)
$$

is onto.
It follows that there exist holomorphic functions $g_{1}, \ldots, g_{p_{1}}$ on $B \backslash T$ such that

$$
s_{1 \mid B \backslash T}=\sum_{j=1}^{p_{1}} \psi_{1 j} g_{j}, \quad \ldots, \quad s_{q \mid B \backslash T}=\sum_{j=1}^{p_{1}} \psi_{q j} g_{j}
$$

Since $\operatorname{dim}_{\mathbb{C}} T \leq n-2$, the functions $g_{1}, \ldots, g_{p_{1}}$ can be holomorphically extended through T by $\widetilde{g}_{1}, \ldots, \widetilde{g}_{p_{1}}$. This implies that $s \in H^{0}(B, \operatorname{Im} \psi)$, so $s=\psi(\widetilde{g})$, $g=\left(g_{1}, \ldots, g_{p_{1}}\right)$, and consequently $\tau=(\varphi \circ \psi)(\widetilde{g})=0$.

The proof when U is a neighbourhood of $X \backslash(D \cup L)$ is similar starting by a pseudoconvex domain D_{1} with a smooth boundary satisfying the following properties:
(i) $D_{1} \subset D, D \backslash \bar{D}_{1} \subset U$;
(ii) $\mathrm{b} D_{1} \cap \mathrm{~b} D \subset V \cap \mathrm{~b} D$;
(iii) $\mathrm{b} D_{1}$ is strongly pseudoconvex at the points of $\mathrm{b} D_{1} \backslash \mathrm{~b} D_{1} \cap \mathrm{~b} D$.

Remark 3.2. In view of a theorem by Alexander and Stout [1], the connectedness of $D \backslash \widehat{L}$ is certainly satisfied if $\widehat{L} \cap b D=L$. Indeed, the connected components A_{i} of $D \backslash \hat{L}$ and B_{i} of $b D \backslash(\hat{L} \cap b D)$ are in a 1-1 correspondence given by

$$
A_{i} \leftrightarrow B_{i} \Longleftrightarrow b A_{i} \cap b D=B_{i} .
$$

Since $L=\hat{L} \cap b D$, and $b D \backslash L$ is connected, also $D \backslash \hat{L}$ is connected.
If L is a Stein compact we have the following
Theorem 3.3. Let X be a locally irreducible Stein space, D be a bounded domain in X with a connected smooth boundary $\mathrm{b} D \subset X_{\mathrm{reg}}$ and $L \subset \mathrm{~b} D$ be a Stein compact. Let \mathcal{F} be a coherent sheaf on X satisfying
(1) depth $\mathcal{F}_{x} \geq 3$ for every $x \in X$;
(2) $\operatorname{dim}_{\mathbb{C}} T(\mathcal{F}) \leq n-2$.

Then every section of \mathcal{F} on $b D \backslash L$ uniquely extends to a section on $\bar{D} \backslash L$.

Proof. Let

$$
p(\mathscr{F})=\inf _{x \in X} \operatorname{depth} \mathcal{F}_{x}
$$

and $\left\{U_{\alpha}\right\}$ be a fundamental system of Stein neighbourhoods of L. Then for the compact support cohomology groups we have

$$
H_{c}^{j}\left(U_{\alpha}, \mathscr{F}\right)=0
$$

for $j \leq p(\mathcal{F})-1$ and every α. Moreover, if $H_{L}^{j}(X, \mathcal{F})$ denotes the $j^{\text {th }}$ local cohomology group with support in L, we have the isomorphism

$$
H_{L}^{j}(X, \mathscr{F})=\underset{U_{\alpha}}{\lim } H_{c}^{j}\left(U_{\alpha}, \mathcal{F}\right)
$$

(see [5, Corollaire 2.16]) hence

$$
H_{L}^{j}(X, \mathscr{F})=\{0\}
$$

for $j \leq p(\mathcal{F})-1$.
From the local cohomology exact sequence

$$
\cdots \rightarrow H^{j}(X, \mathscr{F}) \rightarrow H^{j}(X \backslash L, \mathscr{F}) \rightarrow H_{L}^{j+1}(X, \mathscr{F}) \rightarrow \cdots,
$$

in view of the fact that X is a Stein space, we then obtain

$$
H^{j}(X \backslash L, \mathcal{F})=\{0\}
$$

for $1 \leq j \leq p(\mathcal{F})-2$. In particular, since $p(\mathscr{F}) \geq 3$ we have

$$
H^{1}(X \backslash L, \mathcal{F})=\{0\}
$$

Let $s \in H^{0}(b D \backslash L, \mathcal{F})$. Applying the Mayer-Vietoris sequence to the following closed partition of $X \backslash L$,

$$
X \backslash L=(\bar{D} \backslash L) \cup[X \backslash(D \cup L)]
$$

we get the exact sequence
$H^{0}(\bar{D} \backslash L, \mathcal{F}) \oplus H^{0}(X \backslash(D \cup L), \mathcal{F}) \rightarrow H^{0}(b D \backslash L, \mathcal{F}) \rightarrow H^{1}(X \backslash L, \mathcal{F})$.
Since $H^{1}(X \backslash L, \mathcal{F})=\{0\}$ the first homomorphism is onto, so the section s is a difference $s=s_{1}-s_{2}$ of two sections

$$
s_{1} \in H^{0}(\bar{D} \backslash L, \mathcal{F}), \quad s_{2} \in H^{0}(X \backslash(D \cup L), \mathcal{F})
$$

Hence, in order to end our proof, we have to extend the section s_{2}. Consider an open Stein neighbourhood U of L. Since, by hypothesis, $p(\mathcal{F}) \geq 3$ we have $H_{c}^{1}(U, \mathcal{F})=\{0\}$ and consequently, again from the cohomology exact sequence

$$
H^{0}(X, \mathcal{F}) \rightarrow H^{0}(X \backslash U, \mathcal{F}) \rightarrow H_{c}^{1}(U, \mathcal{F}) \rightarrow \cdots,
$$

we deduce that the homomorphism

$$
H^{0}(X, \mathcal{F}) \rightarrow H^{0}(X \backslash \bar{U}, \mathcal{F})
$$

is onto. In particular, there exists a global section \tilde{s}_{2} which extends $s_{2 \mid X \backslash U}$.
If we choose a smaller Stein neighbourhood $V \supset L$, we get a second extension $\tilde{s}_{2, V}$ of $s_{2_{\mid X \backslash U}}$ which agrees with s_{2} on the bigger set $X \backslash V$. The difference $\tilde{s}_{2}-\tilde{s}_{2, V}$ is a section on X with (compact) support in U (since out of U they both agree with s_{2}). Hence its support S is a discrete set of points. Since $p(\mathcal{F}) \geq 3$, $S=\varnothing$, which means that \tilde{s}_{2} is actually an extension of s_{2}. Thus, $\tilde{s}=s_{1}-\tilde{s}_{2}$ is a section of \mathcal{F} on $\bar{D} \backslash L$ which extends s. This concludes the proof.

Corollary 3.4. Let X be a locally irreducible Stein space, D be a bounded domain in X with a connected smooth boundary $\mathrm{b} D \subset X_{\mathrm{reg}}$ and $L \subset \mathrm{~b} D$ be a Stein compact. Let \mathcal{F} be a coherent sheaf on X. Assume that
(1) depth $\mathcal{F}_{x} \geq 3$ for every $x \in X$;
(2) $\operatorname{dim}_{\mathbb{C}} T(\mathcal{F}) \leq n-2$.

Let U be an open neighbourhood of $\bar{D} \backslash L$. Then every section of \mathcal{F} on $U \backslash \bar{D}$ uniquely extends to a section on $U \backslash L$.
Proof. Define a smooth domain D^{\prime} such that $U \supset \bar{D}^{\prime} \supset \bar{D}$ and $\mathrm{b} D^{\prime} \cap \bar{D}=L$. Any section s of \mathscr{F} on $U \backslash \bar{D}$ gives a section of \mathscr{F} on $\mathrm{b} D^{\prime} \backslash L$. Hence, applying Theorem 3.3 to D^{\prime} and L we get the desired extension.

Theorem 3.3 can be slightly improved if X is a Stein manifold. Indeed, in that case, under the same hypothesis for D, we are allowed to assume that \mathscr{F} is defined only in a neighbourhood of \bar{D}. The proof uses the fact that every domain W of X has the envelope of holomorphy \widehat{W} (see [13, 7]). We recall that \widehat{W} is the set of all continuous characters $\chi: \mathcal{O}(W) \rightarrow \mathbb{C}$ (or, equivalently, the set of all closed maximal ideals of $\mathcal{O}(X)$) equipped with the weak topology. The complex structure on \widehat{W} is such that
(i) the map $\mathrm{j}: W \rightarrow \widehat{W}$ associating to a point $x \in W$ the point evaluation $f \mapsto \delta_{x}(f)=f(x), f \in \mathcal{O}(W)$, is a biholomorphism $W \simeq \mathrm{j}(W)$ such that $\mathrm{j}^{*}: \mathcal{O}(\widehat{W}) \rightarrow \mathcal{O}(W)$ is an isomorphism of Fréchet algebras;
(ii) if $f \in \mathcal{O}(W)$, the function $\widehat{f}: \delta(X) \rightarrow \mathbb{C}$ defined by $\widehat{f}(\chi)=\chi(f)$ is a holomorphic extension of f;
(iii) the restriction map $\mathcal{O}(X) \rightarrow \mathcal{O}(W)$ gives a holomorphic map $\widehat{p}: \widehat{W} \rightarrow X$ making \widehat{W} a domain over X.

Theorem 3.5. Let D be a bounded domain of a Stein manifold X with a connected smooth boundary and $L \subset \mathrm{~b} D$ be a Stein compact. Let $\widehat{p}: \widehat{D} \rightarrow X$ be the envelope of holomorphy of D and \mathcal{F} be a coherent sheaf on a neighbourhood W of $\widehat{\hat{p}(\widehat{D})}$ satisfying
(1) depth $\mathcal{F}_{x} \geq 3$ for every $x \in W$;
(2) $\operatorname{dim}_{\mathbb{C}} T(\mathcal{F}) \leq n-2$.

Then every section of \mathcal{F} on $b D \backslash L$ uniquely extends to $\bar{D} \backslash L$.
Proof. Let \widehat{W} be the envelope of holomorphy of $W, \widehat{p}: \widehat{W} \rightarrow X$ be the canonical projection and $j: W \rightarrow \widehat{W}$ be the canonical open embedding of W into \widehat{W}. $j^{*}: \mathcal{O}(\widehat{W}) \rightarrow \mathcal{O}(W)$ is an isomorphism. In particular $\widehat{p}^{*} \mathcal{F}$ is a coherent sheaf on \widehat{W} with the same depth as \mathcal{F}, which extends $j_{*} \mathcal{F}$. At this point we argue as in the proof of Theorem 3.3.

3.2 Analytic sets

As for analytic sets, results of removability are obtained arguing as in the proof of Theorem 3.1 taking into account Theorem 2.7. Precisely

Theorem 3.6. Let X be an n-dimensional manifold, D be a bounded pseudoconvex domain in X with a connected smooth boundary and L be a compact subset of $b D$. Assume that $\mathrm{b} D \backslash(\widehat{L} \cap b D)$ is a non-empty strongly Levi convex hypersurface.

Let U be an open neighborhood of $\bar{D} \backslash(\widehat{L} \cap b D)$ and Y be a closed, analytic subset of $U \backslash \bar{D}$ such that depth $\mathcal{O}_{Y, x} \geq 3$ for every $x \in U \backslash \bar{D}$. Then Y extends to an analytic subset \widetilde{Y} of $(D \backslash \widehat{L}) \cup U$.

3.3 Obstructions to extension

The extension theorems proved in the above sections state that, under appropriate conditions, analytic objects like $C R$-functions, sections of coherent sheaves, analytic subsets defined on $b D \backslash L(b D \backslash L$ being connected) extend - uniquely to $D \backslash \widehat{L}$ where \widehat{L} is the envelope of L with respect to the algebra $\mathcal{A}(D)$ of holomorphic functions continuous up to the boundary.

Natural problems arise about minimality. In order to state the problem in all generality, given a compact subset L of $\mathrm{b} D$ we fix a class C of analytic objects and we consider the family L_{C} of all compact subsets \widetilde{L} of \bar{D}, partially ordered by inclusion, satisfying the following properties:
(i) $\widetilde{L} \cap b D=L$;
(ii) every analytic object of C defined on $b D \backslash L$ extends - uniquely - to $D \backslash \widetilde{L}$.

Suppose that $L_{C} \neq \varnothing$; then there exists in L_{C} some minimal element L_{C}^{0}. One natural problem arises: is L_{C}^{0} unique? In general, due to polidromy phenomena, the answer could be negative. A second observation is that, at least in the cases already considered, if we have unicity then for the minimal compact L_{C}^{0}, we have the inclusions

$$
L \subset L_{\mathrm{C}}^{0} \subset \widehat{L}
$$

Trivial examples show that the two extremal cases may actually occur. Moreover L_{C}^{0} heavily depends upon the class C . For instance, let $D=\mathbb{B}^{n} \subset \mathbb{C}^{n}, L=$ $b \mathbb{B}^{n} \cap\left\{z_{n-2}=\cdots=z_{n}=0\right\}=\mathbb{S}^{1} \times\{0\}^{n-1}, n \geq 5$, and C_{1} be the class of holomorphic functions, and C_{2} be the class of analytic sets of codimension 3 . Then the minimal compacts are

$$
L_{\mathrm{C}_{1}}^{0}=L \subsetneq \widehat{L}=L_{\mathrm{C}_{2}}^{0}
$$

as shown by the fact that the analytic set

$$
\bigcup_{k \in \mathbb{Z}}\left\{z_{n-2}=z_{n-1}=0, z_{n}=\frac{1}{k}\right\}
$$

does not extend through \widehat{L}.

4 The unbounded case

Some of the previous results extend to unbounded domains. The following is of particular interest.

Theorem 4.1. Let X be a complex space and D be a strongly pseudoconvex unbounded domain with a connected boundary. Assume that there exists a sequence $\left\{p_{k}\right\}$ of pluriharmonic functions near \bar{D} such that
(1) $D_{k}=\left\{x \in D: p_{k}(x)>0\right\} \subsetneq D_{k+1}=\left\{x \in D: p_{k+1}(x)>0\right\}$;
(2) $D_{k} \Subset X$ and $D=\bigcup_{k \geq 1} D_{k}$.

Let \mathcal{F} be a coherent sheaf on a neighbourhood U of \bar{D} such that
(3) depth $\mathcal{F}_{x} \geq 3$ for every $x \in U$;
(4) $\operatorname{dim}_{\mathbb{C}} T(\mathcal{F}) \leq n-2$.

Then every section of \mathcal{F} on $U \backslash \bar{D}$ uniquely extends to a section on U.
Proof. Fix a section σ of \mathscr{F} on $U \backslash \bar{D}$. Consider the domain D_{k}. Since D is strongly pseudoconvex, using the bump lemma we find a Stein neighbourhood $V_{k} \subset U$ of \bar{D}_{k}. We may assume that the function p_{k} is defined on V_{k}, so $\mathrm{b} D_{k} \cap \mathrm{~b} D$ is a Stein compact L_{k}, and we are in position to apply Theorem 3.3 and obtain a unique section $\hat{\sigma}_{k}$ of \mathcal{F} on $V_{k} \backslash L_{k}$ extending σ. Repeating this argument for every k, thanks to the uniqueness of extension we get the conclusion.

Remark 4.2. If $X=\mathbb{C}^{n}$, conditions (1) and (2) are implied by the following one:
(\star) if \bar{D}^{∞} denotes the closure of $D \subset \mathbb{C}^{n} \subset \mathbb{C} \mathbb{P}^{n}$ in $\mathbb{C} \mathbb{P}^{n}$, then there exists an algebraic hypersurface V such that $V \cap \bar{D}^{\infty}=\varnothing$.
Under this condition the extension of analytic sets (with discrete singularities) of dimension at least two holds, see [10].

Acknowledgments. This paper was partly written during a visit of the authors to Seoul National University in November 2007 and was finished thanks to the hospitality given by Scuola Normale Superiore to the first author. Thus we would like to thank SNU and SNS for the hospitality.

The authors wish to thank the referee for his precise and useful remarks.

Bibliography

[1] H. Alexander and E. L. Stout, A note on hulls, Bull. Lond. Math. Soc. 22 (1990), 258-260.
[2] A. Andreotti, Théorèmes de dépendence algébrique des espaces pseudoconcaves, Bull. Soc. Math. France 91 (1963), 1-38.
[3] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259.
[4] A. Andreotti and G. Tomassini, A remark on the vanishing of certain cohomology groups, Compositio Math. 21 (1969), 417-430.
[5] C. Bănică and O. Stănăşilă, Méthodes algébriques dans la théorie globale des espaces complexes, Volume 1, Collection "Varia Mathematica", Gauthier-Villars, Paris, 1977.
[6] R. Benedetti, Density of Morse functions on a complex space, Math. Ann. 229 (1977), 135-139.
[7] E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1-21.
[8] H. Cartan, Faisceaux analytiques cohérents, in: Corso C.I.M.E. "Funzioni e varietà complesse", Varenna, 1963.
[9] E. M. Chirka and E. L-. Stout, Removable singularities in the boundary, in: Contributions to Complex Analysis and Analytic Geometry, pp. 43-104, Aspects Math. E26, Vieweg-Verlag, Braunschweig, 1994.
[10] G. Della Sala and A. Saracco, Non compact boundaries of complex analytic varieties, Int. J. Math. 18 (2007), 203-218.
[11] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123.
[12] J. Frisch and J. Guenot, Prolongement de faisceaux analytiques coherénts, Invent. Math. 7 (1969), 321-343.
[13] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.
[14] B. Jöricke, Boundaries of singularity sets, removable singularities, and CR-invariant subsets of CR-manifolds, J. Geom. Anal. 9 (1999), no. 2, 257-300.
[15] N. Kerzman, Hölder and L^{p}-estimates for solutions of $\bar{\partial} u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301-379.
[16] C. Laurent-Thiébaut and E. Porten, Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity, Ann. Inst. Fourier (Grenoble) 53 (2003), 847-857.
[17] G. Lupacciolu, Characterization of removable sets in strongly pseudoconvex boundaries, Ark. Mat. 32 (1994), no. 2, 455-473.
[18] J. Merker and E. Porten, Holomorphic extension of CR functions, envelopes of holomorphy, and removable singularities, IMRS Int. Math. Res. Surv. (2006), 287.
[19] A. Saracco and G. Tomassini, Cohomology and extension problems for semi q-coronae, Math. Z. 256 (2007), 737-748.
[20] A. Saracco and G. Tomassini, Cohomology of semi 1-coronae and extension of analytic subsets, Bull. Sci. Math. 132 (2008), 232-245.
[21] J.P. Serre, Prolongement de faisceaux analytiques coherénts, Ann. Inst. Fourier (Grenoble) 16 (1966), 363-374.
[22] Y. T. Siu, Extension problems in several complex variables, in: Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 669-674, Acad. Sci. Fennica, Helsinki, 1980.
[23] Y. T. Siu and G. Trautmann, Gap-sheaves and Extension of Coherent Analytic Subsheaves, Lecture Notes in Mathematics 172, Springer-Verlag, Berlin, New York, 1971.
[24] E. L. Stout, Removable singularities for the boundary values of holomorphic functions, in: Several Complex Variables (Stockholm, 1987/1988), pp. 600-629, Math. Notes 38, Princeton Univ. Press, Princeton, N.J., 1993.

Received October 25, 2008; revised December 8, 2009.

Author information

Alberto Saracco, Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy.
Current address: Dipartimento di Matematica, Università di Parma,
Viale Usberti 53/A, 43124 Parma, Italy.
E-mail: alberto.saracco@unipr.it
Giuseppe Tomassini, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy. E-mail: g.tomassini@sns.it

