Some recent contributions to CR-submersions

Vittorio Mangione

In this survey work\(^1\) we give some our recent contributions on submersions of CR-, or QR-submanifolds, as well as some results of other authors on the topic.

The study of Riemannian submersions was initiated by B. O'Neill ([21]) and A. Gray ([13]). This theory was developed very much in the last thirty five years. A good reference is chapter 9 of Besse’s book [7]; see also some recent papers [1], [2].

We recall that a Riemannian submersion yields a vertical distribution \(\mathcal{V}\) which is integrable and a horizontal distribution \(\mathcal{H}\) (see [7], p. 236). On the other hand, on a CR-submanifold \(M\) of a Kähler manifold \((\tilde{M}, \tilde{g}, J)\) there are two orthogonal complementary distributions \(\mathcal{V}\) and \(\mathcal{H}\), such that \(\mathcal{H}\) is \(J\)-invariant and \(\mathcal{V}\) is totally real (cf. A. Beyancu [5]).

Recently, S. Kobayashi considered the similarity between the total space of a Riemannian submersion and a CR-submanifold of a Kähler manifold in terms of distributions ([15]).

Let \(TM^\perp\) be the normal bundle of \(M\) in \(\tilde{M}\). We denote by \(\mu\) the orthogonal complementary vector bundle to \(J(\mathcal{V})\) in \(TM^\perp\), i.e. \(TM^\perp = J(\mathcal{V}) \oplus \mu\). It is clear that \(\mu\) is a holomorphic sub bundle of \(TM^\perp\), i.e. \(J(\mu) = \mu\).

Definition 1. Let \(M\) be a CR-submanifold of a Kähler manifold \((\tilde{M}, g, J)\). A CR-submersion from a CR-submanifold \(M\) onto an almost Hermitian manifold \((M', g', J')\) is a Riemannian submersion \(\pi : M \to M'\), such that:

\[(i)\] \(\mathcal{V}\) is the kernel of \(\pi_*\);

\[(ii)\] for each \(x \in M\), \(\pi_* : \mathcal{H}_x \to T_{\pi(x)}M'\) is a complex isometry, i.e. \(\pi_* \circ J = J' \circ \pi_*\).

The above definition is given by S. Kobayashi in the case where \(\mu\) is a null sub bundle of \(TM^\perp\) (see [15]). If \(J\mathcal{V}_x = T_xM^\perp\), for any \(x \in M\) we say that \(M\) is a *generic CR-submanifold* of \(M\) (cf. [23]). For example, any real orientable hypersurface of \(M\) is a generic CR-submanifold of \(M\).
The vertical distribution \mathcal{V} of a Riemannian submersion is the kernel of π^*, so that \mathcal{V} is an integrable distribution. D.B. Blair and B.Y. Chen have proved that any totally real distribution \mathcal{V} of a CR-submanifold M of a Kähler manifold \tilde{M} is always integrable ([3]).

We have the first basic result:

Theorem 1. Let M be a CR-submanifold of a Kähler manifold \tilde{M} and let $\pi : M \to M'$ be a CR-submersion of M onto an almost Hermitian manifold M'. Then M' is a Kähler manifold.

This theorem is proved for the generic case $\mathcal{V} = \{0\}$ in [15] and for the case $\mathcal{V} \neq \{0\}$ in [16].

In the generic case, another contribution was given in [15] on the relation between the holomorphic sectional curvatures of \tilde{M} restricted to \mathcal{H} and those of M'. Namely, one has shown the following formula:

$$
\tilde{K}(X) = K'(\pi_*X) - 4\|B(X, X)\|^2,
$$

for any unit horizontal vector X, where \tilde{K} and K' are the holomorphic sectional curvatures of \tilde{M} and M' respectively, and B is the second fundamental form of M in \tilde{M}.

Now we will present our investigations on the CR-submersions from an extrinsic hypersphere of an Einstein-Kähler manifold. We say that a totally umbilical hypersurface M of a Riemannian manifold \tilde{M} is an extrinsic hypersphere iff the mean curvature vector field H is parallel and $H_x \neq 0$, for any $x \in M$. Many of the basic results concerning extrinsic spheres in Riemannian and Kählerian geometry were obtained by B.Y. Chen ([8]). We have,

$$
B(E, F) = g(E, F)H,
$$

for any couple of vector fields E, F on M. If we put $k = \|H\|$ (where the norm $\|\cdot\|$ is respect to scalar product induced by g on every tangent space to M), then $\xi = -\mathcal{J}N$ is a global unit vector on M.

We see that M is a CR-hypersurface of \tilde{M} such that \mathcal{V} is the one dimensional anti-invariant distribution generated by the vector field ξ.

Then, in [16] we proved the following theorem:

Theorem 2. Let M be an orientable extrinsic hypersphere of a Kähler-Einstein manifold \tilde{M}. If $\pi = M \to M'$ is a CR-submersion
of M onto an almost Hermitian manifold M', then M' is a Kähler-Einstein manifold.

Now we suppose that \tilde{M} is a complex space form. Then we may state (see [9]):

Theorem 3. Let $\pi : M \to M'$ be a CR-submersion of a totally umbilical CR-submanifold ($\dim M \geq 5$) of a complex space form $\tilde{M}(c)$ onto an almost Hermitian manifold M'. Then M' is also a complex space form.

A CR-submanifold M of a Kähler manifold \tilde{M} is said to be a mixed foliate if \mathcal{H} is an integrable distribution and $B(U, X) = 0$ for any $U \in \mathcal{V}_x$, $X \in \mathcal{H}_x$, $x \in M$. In [9] the authors proved the following result.

Theorem 4. Let M be a mixed foliate CR-submanifold of a Kähler-Einstein manifold \tilde{M}. If $\pi : M \to M'$ is a CR-submersion of M onto an almost Hermitian manifold M', then M' is also a Kähler-Einstein manifold.

Remarks.

An extrinsic hypersphere of a Kähler-Einstein manifold \tilde{M} is not a mixed foliate CR-submanifold (see Th. 2.).

In [10], the authors studied similar problems for CR-submanifolds in Hermitian, quasi-Kähler or nearly Kähler manifolds. In this cases, totally real distributions are not necessarily integrable. To overcome this difficulty the authors consider the submersions $\pi : M \to M'$ of CR-submanifolds M with an integrable distribution \mathcal{V} onto an almost Hermitian manifold M'. For example, a real hypersurface in S^6 (which is a nearly Kähler manifold) is a CR-hypersurface with a 1-dimensional distribution \mathcal{V} which is always integrable.

Now we describe some results obtained by F. Narita ([20]). Let M be a locally conformal Kähler manifold and let L be the Lee vector field on M (cf. [11]). Then we have

Theorem 5. Let M be a generic CR-submanifold of a locally conformal Kähler manifold \tilde{M} and let $\pi : M \to M'$ be a CR-submersion of M onto an almost Hermitian manifold. Then the Lee vector L belongs to $\mathcal{H} \oplus T M^\perp$ and for any horizontal unit vector $X \in \mathcal{H}$ we have
where A is the integrability tensor with respect to π.
Moreover, if we assume in addition that the horizontal component hL of L is basic and $\dim M' \geq 4$, then M' is also a locally conformal Kähler manifold. In particular, if M is a generalized Hopf manifold and if the Lee vector L is basic, then M' is also a generalized manifold.

Finally, the concept of CR-submersion was extended to semi-invariant (or contact CR-manifold) submanifolds in the Sasakian geometry by N. Papaghiuc ([22]). He obtained basic properties of CR-submersion of a semi-invariant submanifold of a Sasakian manifold onto an almost contact manifold and he studied various relations between the sectional curvatures of \tilde{M} and M'.

In the last part of this survey paper we refer to some Riemannian submersions from a hypersurface of a quaternionic Kähler manifold. First, we recall some definitions.

We say that a $4(m+1)$-dimensional manifold \tilde{M} with a metric g is a quaternionic Kähler manifold ($m \geq 1$), if there exists a 3-dimensional vector bundle \mathcal{V} of tensors of type $(1, 1)$ on \tilde{M} satisfying the following conditions:

a) In any coordinate neighborhood \tilde{U} on \tilde{M} there is a local basis with almost Hermitian structures $\{ J_a, g \}$ such that $J_a^2 = -1d$, $a \in \{1, 2, 3\}$ and $J_a \circ J_b = -J_b \circ J_a = J_c$, for any cyclic permutation (a, b, c) of $(1, 2, 3)$.

b) For any local section φ of \mathcal{V} and any tangent vector X to \tilde{M}, $\nabla_X \varphi$ is also a local section in \mathcal{V}, where ∇ denotes the Levi-Civita connection on \tilde{M} ([14], [17]).

Let M be an orientable hypersurface of \tilde{M} and le ξ be a unit normal field defined on M. One obtains a distribution \mathcal{V} on M which is locally represented by $\{ \xi_a \}$, $1 \leq a \leq 3$, on \tilde{U}, where $\xi_a = -J_a(\xi)$, $a \in \{1, 2, 3\}$. Let \mathcal{H} be the orthogonal complementary distribution to \mathcal{V} with respect to g on M.

We say that M is a QR-hypersurface of \tilde{M} (cf. [6]). Firstly, we remark that a real hypersurface of a quaternionic Kähler manifold is not a CR-hypersurface of \tilde{M}.

Definition 2. Let M be a QR-hypersurface of a quaternionic Kähler manifold \tilde{M}, such that the vertical distribution \mathcal{V} is integrable.
We say that a Riemannian submersion $\pi : M \to M'$ is a QR-submersion if the following conditions are satisfied:

i) V is the kernel of π^*;

ii) for each x, $\pi_* : \mathcal{H}_x \to T_{\pi(x)}M'$ is an isometry with respect to each complex structure of \mathcal{H}_x and $T_{\pi(x)}M'$.

It is well known that the vertical distribution \mathcal{V} is integrable if and only if $B(U, X) = 0$ for any $U \in \Gamma(\mathcal{V})$ and $X \in \Gamma(\mathcal{H})$. In this case we say that M is a mixed geodesic QR-hypersurface.

We proved the following result ([17]).

Theorem 6. Let M be a mixed geodesic QR-hypersurface of a quaternionic Kähler manifold \tilde{M}. If $\pi : M \to M'$ is a QR-submersion of M on an almost quaternionic Hermitian manifold, then M' is a quaternionic Kähler manifold.

Theorem 7. Let M be a totally umbilical, but not totally geodesic, QR-hypersurface of a quaternionic Kähler manifold \tilde{M}. Then,

a) $\tilde{K}(U, V) = K(U, V) - \|H\|^2$, where $\{U, V\}$ is an orthonormal basis of the vertical 2-plane α, $\alpha \in \mathcal{V}_x$, $x \in M$ and \tilde{K}, K denote the sectional curvatures of α on \tilde{M}, M, respectively.

b) $K(X, Y) = K'(X', Y') - 3\|H\|^2 \sum_{a=1}^{3} < X, J_a Y >^2$, where X, Y is an orthonormal basis of a horizontal 2-plane $\alpha \in \mathcal{H}_x$, $K(X, Y)$ denoting the sectional curvature of α, and $K'(X', Y')$ denotes the sectional curvature in M' of the 2-plane spanned by $X' = \pi_* X, Y' = \pi_* Y$.

Theorem 8. Let M be an extrinsic hypersurface of a flat quaternionic Kähler manifold \tilde{M} and let $\pi : M \to M'$ be a QR-submersion of M on a quaternionic Kähler manifold M'. Then M' is a quaternionic Kähler manifold with constant quaternionic sectional curvature $c > 0$, ($c = \|H\|$).

References

e-mail address: vittorio.mangione@unipr.it