Variational calculus on sub-Riemannian manifolds

Ovidiu Calin and Vittorio Mangione

Abstract

We provide invariant formulas for the Euler-Lagrange equation associated to sub-Riemannian geodesics. They use the concept of curvature and horizontal connection introduced and studied in the paper.

Key words: curvature, geodesics, connection

MS Classification: (2000) Principal: 37J60; Secondary: 53B21, 70H03

1 Introduction

Consider a nonintegrable 2-dimensional distribution $x \rightarrow H_x$ in $\mathbb{R}^3 = \mathbb{R}^2_{(x_1,x_2)} \times \mathbb{R}^t$ defined as $H = \ker \omega$, where ω is a 1-form on \mathbb{R}^3. The distribution H is called the horizontal distribution. We shall assume the 1-form $\omega = \omega^1 dx_1 + \omega^2 dx_3 + \omega^3 dt$ has the coefficient $\omega^3 \neq 0$ so that dividing by it we may assume

$$\omega = -A_1(x) dx_1 + A_2(x) dx_2 + dt \quad (1.1)$$

with $A_1 = -\omega^1, and A_2 = \omega^2$. One may verify that

$$\omega(X_1) = \omega(X_1) = 0$$

where

$$X_1 = \partial_{x_1} + A_1(x) \partial_t , \quad X_2 = \partial_{x_2} - A_2(x) \partial_t \quad (1.2)$$

The vector fields X_1, X_2 span the horizontal distribution H and they are called horizontal vector fields.

Suppose the 2-form

$$\Omega := d\omega = \left(\frac{\partial A_1}{\partial x_1} + \frac{\partial A_2}{\partial x_1} \right) dx_1 \wedge dx_2 \quad (1.3)$$

does not vanish. Then

$$[X_1, X_2] = -\left(\frac{\partial A_1}{\partial x_1} + \frac{\partial A_2}{\partial x_1} \right) \partial_t \notin \mathcal{H} \quad (1.4)$$

and then \mathcal{H} is not integrable, by Frobenius theorem.

Consider the positive definite metric $g : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{F}$ in which the vector
fields \(\{X_1, X_2\} \) are orthonormal. The metric \(g \) is called the sub-Riemannian metric defined by the vector fields \(X_1 \) and \(X_2 \).

A curve \(s \to c(s) = (x_1(s), x_2(s), t(s)) \) is called horizontal curve if \(\dot{c}(s) \in \mathcal{H}_{c(s)} \), for every \(s \). As

\[
\dot{c}(s) = \dot{x}_1(s)\partial_{x_1} + \dot{x}_2(s)\partial_{x_2} + \dot{t}(s)\partial_t
\]

\[
= \dot{x}_1(s)X_1 + \dot{x}_2(s)X_2 + \omega(\dot{c}(s))\partial_t
\]

then \(c(s) \) is a horizontal curve iff

\[
\omega(\dot{c}) = \dot{t} - A_1(c)\dot{x}_1 + A_2(c)\dot{x}_2 = 0 \quad (1.5)
\]

The length of \(c \) with respect to the metric \(g \) is

\[
l(c) = \int_0^1 \sqrt{g(\dot{c}(s), \dot{c}(s))} \, ds = \int_0^1 \sqrt{\dot{x}_1(s)^2 + \dot{x}_2(s)^2} \, ds \quad (1.6)
\]

Given two points \(O \) and \(P \) there is at least a horizontal curve connecting them (see Chow [7]). The Carnot-Carathéodory distance is defined as

\[
d_C(O, P) = \inf\{l(c), c(0) = O, c(1) = P, c \text{ horizontal}\} \quad (1.7)
\]

The horizontal curve with minimum length are called sub-Riemannian geodesics and can be described using the Hamiltonian formalism as in the following (see Strichartz [11]).

Consider the sub-elliptic operator

\[
\Delta_X = \frac{1}{2}\left(X_1^2 + X_2^2\right) \quad (1.8)
\]

and define the Hamiltonian as the principal symbol of \(\Delta_X \)

\[
H(x, t, \xi, \theta) = \frac{1}{2}\left(\xi_1 + A_1(x)\theta\right)^2 + \frac{1}{2}\left(\xi_2 - A_2(x)\theta\right)^2 \quad (1.9)
\]

The projections on the \((x, t)\)-space of the solution of the Hamilton’s system

\[
\dot{x} = H_\xi, \quad \dot{t} = H_\theta \quad (1.10)
\]

\[
\dot{\xi} = -H_x, \quad \dot{\theta} = -H_t \quad (1.11)
\]

with the boundary conditions

\[
x(0) = t(0) = 0, \quad x(1) = x, t(1) = t \quad (1.12)
\]

are called sub-Riemannian geodesics between the origin and \((x, t)\).

From \(\dot{t} = H_\theta \) we get

\[
\dot{t} = A_1\dot{x}_1 - A_2\dot{x}_2 \quad (1.13)
\]

i.e. the sub-Riemannian geodesics are horizontal curves.
2 Connection and curvature

The horizontal connection
The horizontal connection is defined as

\[D : \mathcal{H} \times \mathcal{H} \to \mathcal{H} \] (2.14)

\[D(V, W) = D_V W = \sum_{k=1,2} V g(W, X_k) X_k \] (2.15)

Proposition 2.1 \(D \) is a linear metric connection.

Proof: One needs to verify the Leibnitz rule

\[D_V (f W) = V(f) W + f D_V W \] (2.16)

and the condition

\[U g(V, W) = g(D_U V, W) + g(V, D_U W) \] (2.17)

For the first part,

\[D_V (f W) = \sum V g(f W, X_k) X_k \]

\[= \sum V(f) g(W, X_k) X_k + f \sum V g(W, X_k) X_k \]

\[= V(f) W + f D_V W \]

To show the second part,

\[g(D_U V, W) + g(V, D_U W) = \]

\[= g \left(\sum U g(V, X_i) X_i, W \right) + g \left(V, \sum U g(W, X_i) X_i \right) \]

\[= g \left(\sum U (V^i) X_i, W \right) + g \left(V, \sum U (W^i) X_i \right) \]

\[= \sum U (V^i) W^i + \sum U (W^i) V^i \]

\[= U \left(\sum V^i W^i \right) = U g(V, W) \]

where \(V = \sum V^i X_i \) and \(W = \sum W^i X_i \).
Let $Z = Z^1X_1 + Z^2X_2$ be a horizontal vector field. The horizontal divergence is defined as

$$\text{div}_H Z = \text{trace}_g (V \rightarrow D_V Z) = \sum_k g(X_k, D_k Z) = \sum_k \left(X_k(Z^j)X_j \right)^k$$

The X-gradient of a function f is defined as

$$\nabla_X f = \sum_k X_k(f) X_k$$

Then

$$\frac{1}{2} \text{div}_H \nabla_X = \Delta_X f$$

The curvature tensor

Let $\mathcal{K} : \mathcal{H} \rightarrow \mathcal{H}$ be defined as

$$\mathcal{K}(U) = \sum_k \Omega(U, X_k)X_k$$

\mathcal{K} is $\mathcal{F}(\mathbb{R}^3)$-linear and can be considered as a $(1,1)$-tensor of curvature.

The following result shows that \mathcal{K} is skew-selfadjoint.

Proposition 2.2 For every $U, W \in \mathcal{H}$

$$g\left(\mathcal{K}(U), W \right) + g\left(U, \mathcal{K}(W) \right) = 0$$

Proof: We show first that

$$g\left(\mathcal{K}(U), W \right) = \Omega(U, W)$$

and using the skew-symmetry of Ω we get (2.22).

Indeed,

$$g\left(\mathcal{K}(U), W \right) = g\left(\sum_k \Omega(U, X_k)X_k, W \right) = \sum_k g(X_k, W)\Omega(U, X_k) = \Omega(U, W).$$
Corollary 2.3 For any $U \in \mathcal{H}$,

$$g\left(\mathcal{K}(U), U\right) = 0. \quad (2.24)$$

The last result suggests that in the case of a 2-dimensional distribution, the curvature \mathcal{K} is proportional with a rotation of angle $\pi/2$.

Define the rotation $\mathcal{J} : \mathcal{H} \to \mathcal{H}$ as

$$\mathcal{J}(X_1) = X_2, \quad \mathcal{J}(X_2) = -X_1 \quad (2.25)$$

Then

$$\mathcal{K}(X_1) = \Omega(X_1, X_2)X_2 = \Omega(X_1, X_2)\mathcal{J}(X_1)$$
$$\mathcal{K}(X_2) = \Omega(X_2, X_1)X_1 = \Omega(X_1, X_2)\mathcal{J}(X_2)$$

We arrived at the following formula for the curvature

$$\mathcal{K}(U) = \Omega(X_1, X_2)\mathcal{J}(U), \quad \forall U \in \mathcal{H} \quad (2.26)$$

If the matrix Ω_{ij} is non-degenerate i.e. $\left(\frac{\partial A_1}{\partial x_1} + \frac{\partial A_2}{\partial x_1}\right) \neq 0$, then $\mathcal{K}(U) \neq 0$ for $U \neq 0$.

If V is not a horizontal vector field then the curvature can still be defined using

$$\mathcal{K}(V) = \sum_k \Omega(V, X_k)X_k \quad (2.27)$$

This is because the right hand side depends only on the horizontal part of V. Indeed, consider the vector field

$$V = V^1 \partial_{x_1} + V^2 \partial_{x_2} + V^3 \partial_t$$

A computation shows

$$V = \underbrace{V^1 X_1 + V^2 X_2}_{=V_H} + \omega(V) \partial_t$$

Then

$$\Omega(V, X_k) = \Omega(V_H, X_k) + \omega(V) \Omega(\partial_t, X_k) = 0$$

Hence $\mathcal{K}(V) = \mathcal{K}(V_H)$.

5
3 The Euler-Lagrange equation

The Legendre transform of the Hamiltonian (1.9) leads to the following Lagrangian

$$L(x, t, \dot{x}, \dot{t}) = \frac{1}{2} (\dot{x}_1^2 + \dot{x}_2^2) + \theta \left(\dot{t} - A_1(x) \dot{x}_1 + A_2(x) \dot{x}_2 \right)$$ \hspace{1cm} (3.28)

where θ is constant because

$$\dot{\theta} = -\frac{\partial H}{\partial t} = -\frac{dH}{dt} = 0.$$ \hspace{1cm} (3.29)

We deal now with a minimization problem with constraints given by

$$L(c, \dot{c}) = \frac{1}{2} g(\dot{c}, \dot{c}) + \theta \omega(\dot{c})$$ \hspace{1cm} (3.30)

A computation shows the Euler-Lagrange system of equations

$$\frac{d}{ds} \frac{\partial L}{\partial \dot{c}} = \frac{\partial L}{\partial c}, \quad c = (x_1, x_2, t)$$ \hspace{1cm} (3.31)

becomes

$$\ddot{x}_1 = \theta \left(\frac{\partial A_1}{\partial x_2} + \frac{\partial A_2}{\partial x_1} \right) \dot{x}_2$$ \hspace{1cm} (3.32)

$$\ddot{x}_2 = -\theta \left(\frac{\partial A_1}{\partial x_2} + \frac{\partial A_2}{\partial x_1} \right) \dot{x}_1$$ \hspace{1cm} (3.33)

If the velocity of the geodesic is given by $\dot{c}(s) = \dot{x}_1(s) X_1 + \dot{x}_2(s) X_2$, the system (3.32) – (3.33) can be written as

$$\ddot{x}_1 X_1 + \ddot{x}_2 X_2 = \theta \left(\frac{\partial A_1}{\partial x_2} + \frac{\partial A_2}{\partial x_1} \right) (\dot{x}_2 X_1 - \dot{x}_1 X_2)$$ \hspace{1cm} (3.34)

The right hand side has the meaning of curvature. Indeed, using (2.25) and (2.26) the right hand side of (3.34) yields

$$-\theta \Omega(X_1, X_2) J(\dot{c}) = -\theta K(\dot{c}).$$ \hspace{1cm} (3.35)

For the left hand side of (3.34) consider the acceleration defined by the horizontal connection along $\dot{c}(s)$

$$D_{\dot{c}} \dot{c} = \sum_k \dot{c} g(\dot{c}, X_k) X_k = \dot{c}(\dot{x}_1) X_1 + \dot{c}(\dot{x}_2) X_2 = \ddot{x}_1 X_1 + \ddot{x}_2 X_2.$$ \hspace{1cm} (3.36)
Hence the Euler-Lagrange system of equations can be written globally as

\[Dc \dot{c} = -\theta K(\dot{c}) \]

(3.36)

In sub-Riemannian geometry the acceleration of the geodesics is equal to the curvature. This keeps the geodesics into the horizontal distribution. Like in Riemannian geometry, we have

Corollary 3.1 The length of velocity \(\dot{c} \) in the sub-Riemannian metric \(g \) is constant.

Proof: As \(D \) is a metric connection,

\[\dot{c} g(\dot{c}, \dot{c}) = 2g(Dc \dot{c}, \dot{c}) = -2\theta g(\mathcal{K}(\dot{c}), \dot{c}) = 0 \]

by Corollary 2.3.

Hamilton-Jacobi equation

Lemma 3.2 Let \(c(s) = (x_1(s), x_2(s), t(s)) \) be a horizontal curve and a smooth function \(f \in \mathcal{F}(\mathbb{R}^3) \). Then

\[\frac{df}{ds} = \frac{\partial f}{\partial s} + g(\dot{c}, \nabla_X f) \]

(3.37)

Proof:

\[
\begin{align*}
\frac{df}{ds} &= \frac{\partial f}{\partial s} + \frac{\partial f}{\partial x_1} \dot{x}_1 + \frac{\partial f}{\partial x_2} \dot{x}_2 + \frac{\partial f}{\partial t} \dot{t} \\
&= \frac{\partial f}{\partial s} + \left(X_1 f - A_1(x) \frac{\partial f}{\partial t} \right) \dot{x}_1 \\
&\quad + \left(X_2 f + A_2(x) \frac{\partial f}{\partial t} \right) \dot{x}_2 + \frac{\partial f}{\partial t} \omega(\dot{c}) \\
&= \frac{\partial f}{\partial s} + (X_1 f) \dot{x}_1 + (X_2 f) \dot{x}_2 + \frac{\partial f}{\partial t} \omega(\dot{c}) \\
&= \frac{\partial f}{\partial s} + g(\dot{c}, \nabla_X f).
\end{align*}
\]

In the following we need to find the minimum of

\[I = \int_0^\tau \frac{1}{2} (\dot{x}_1(s))^2 + (\dot{x}_2(s))^2 \, ds \]
= \int_0^\tau \frac{1}{2} |\dot{c}(s)|_g^2 \, ds

over the horizontal curves \(c(s) \) with fixed ends.

Let \(S(x, t) \in \mathcal{F} \) be the solution for the Hamilton-Jacobi equation

\[
\frac{\partial S}{\partial \tau} + \frac{1}{2} |\nabla_X S|^2 = 0 \tag{3.38}
\]

\(S(O) = 0 \).

Consider the integral

\[
J = \int_0^\tau \frac{1}{2} |\dot{c}(s)|_g^2 \, ds - dS \tag{3.39}
\]

Using Lemma 3.2

\[
J = \int_0^\tau \left(\frac{1}{2} |\dot{c}(s)|_g^2 - \frac{\partial S}{\partial s} - g(\nabla_X S, \dot{c}) \right) \, ds
\]

\[
= \int_0^\tau \left(\frac{1}{2} |\dot{c} - \nabla_X S|_g^2 - \left(\frac{\partial S}{\partial s} + \frac{1}{2} |\nabla_X S|^2 \right) \right) \, ds
\]

\[
= \int_0^\tau \frac{1}{2} |\dot{c} - \nabla_X S|_g^2 \, ds \tag{3.40}
\]

The integrals \(I \) and \(J \) reach the minimum for the same horizontal curve and this occurs for a curve with the velocity

\[
\dot{c} = \nabla_X S \tag{3.41}
\]

Theorem 3.3 A horizontal curve \(c(s) \) is energy-minimizing iff (3.41) holds.

Using (2.20) we get

Corollary 3.4 The horizontal divergence of the geodesic flow is

\[
div_H \dot{c} = 2\Delta_X S \tag{3.42}
\]

The Hamiltonian
The Hamiltonian \(H : T^*M \to \mathbb{R} \) is defined as

\[
H(x, p) = \frac{1}{2} \sum_k p(X_k)^2
\]
If $p = df$,
\[H(x, df) = \frac{1}{2} \sum df(X_k)^2 = \frac{1}{2} \sum X_k(f)^2 = \frac{1}{2} |\nabla_X f|^2 \]

For $f = S$,
\[H(x, dS) = \frac{1}{2} |\nabla_X S|^2 = \frac{1}{2} |\dot{c}|^2 = \frac{1}{2} \]

We also have
\[H(x, \omega) = \frac{1}{2} \sum \omega(X_i)^2 = 0 \]

The eiconal equation
Consider the energy associated to a function $f \in \mathcal{F}(\mathbb{R}^3)$ defined as
\[H(\nabla f) = H(x, df) = \frac{1}{2} |\nabla_X f|^2 = \frac{1}{2} \left((X_1 f)^2 + (X_2 f)^2 \right) \]
We also have
\[H(x, \omega) = \frac{1}{2} \sum \omega(X_i)^2 = 0 \]

The eiconal equation
Consider the energy associated to a function $f \in \mathcal{F}(\mathbb{R}^3)$ defined as
\[H(\nabla f) = H(x, df) = \frac{1}{2} |\nabla_X f|^2 = \frac{1}{2} \left((X_1 f)^2 + (X_2 f)^2 \right) \]

The front wave is given by the level curves of the energy and it is described by the eiconal equation
\[H(\nabla f) = k, \quad \text{positive constant} \]
with the initial condition
\[f(O) = 0 \]

If $k = 0$, then f is the constant function equal to zero. Indeed, suppose that f is not constant. There is a point p such that $(\text{grad} f)_p \neq 0$. Then $\Sigma_c = f^{-1}(c)$ will be a surface through p, where $c = f(p)$. As $X_i(f) = 0$, then X_i are tangent to Σ_c on a neighborhood of p and hence Σ_c becomes integral surface for the horizontal distribution \mathcal{H} around p, which is nonintegrable, contradiction.

If $k \neq 0$, consider the geodesics starting at origin $c(0) = O$ parametrized such that $|\dot{c}(s)|^2_g = 2k$. If S is the action along $c(s)$, by (3.41)
\[H(\nabla S) = \frac{1}{2} |\nabla_X S|^2_g = \frac{1}{2} |\dot{c}|^2_g = k \]

Jacobi vector fields and curvature
Let $c(s)$ be a subRiemannian geodesic which starts at origin and let P be the first conjugate point with 0 along $c(s)$. Denote by $V(s)$ a Jacobi vector field along $c(s)$ and by $S(s)$ the action between 0 and $c(s)$.

9
Proposition 3.5
\[
\int_0^1 K(V(s))(S(s)) \, ds = 0 \tag{3.46}
\]

where \(P = c(1) \) and \(K \) is the curvature.

Proof:
Let \(c_\epsilon = F_\epsilon(c) \) be a smooth variation of \(c \), such that for every \(\epsilon \), \(c_\epsilon \) is a subRiemannian geodesic. As \(c_\epsilon \) is a horizontal curve, then
\[
0 = \int_0^1 \omega(\dot{c}_\epsilon(s)) \, ds = \int_{c_\epsilon} \omega = \int_{F_\epsilon(c)} F_\epsilon^* \omega = \int_c F_\epsilon^* \omega
\]
Then
\[
\frac{d}{d\epsilon} \int_c F_\epsilon^* \omega = 0
\]
or,
\[
\int_c L_V \omega = 0
\]
where \(V \) is the Jacobi vector field associated to the variation \((c_\epsilon)_\epsilon \).

As \(V \) is zero at the end points of \(c \),
\[
\int_C d(i_V \omega) = \int_{\partial C} i_V \omega = \omega(V)(0) - \omega(V)(1) = 0
\]
Using Cartan decomposition
\[
L_V \omega = d(i_V \omega) + i_V (d\omega)
\]
we get
\[
\int_c i_V \Omega = 0
\]
which can also be written as
\[
\int_0^1 \Omega(V(s), \dot{c}(s)) \, ds = 0
\]
Using \(\dot{c} = \sum \dot{c}^j X_j \) and \(\dot{c}^j(s) = X_j(S) \), then
\[
\Omega(V, \dot{c}) = \Omega(V, \dot{c}^j X_j) = \dot{c}^j \Omega(V, X_j) = \Omega(V, X_j) X_j(S) = K(V)(S).
\]
Hence
\[
\int_0^1 K(V)(S) \, ds = 0
\]
4 Constant curvature flow

In this section we ask the problem to a vector field such that $|K(V)|^2 = 1$. As a nondegenerate, closed 2-form, Ω can be regarded as a symplectic form. One may associate the horizontal Hamiltonian vector field X_f to a function f as

$$\Omega(X_f, W) = W(f), \quad \forall W \in \mathcal{H} \quad (4.47)$$

We shall show that X_f has constant curvature for a certain f.

$$K(X_f) = \sum \Omega(X_f, X_k)X_k = \sum X_k(f)X_k = \nabla_X f$$

and choosing $f = S$

$$|K(X_S)|^2_g = |\dot{c}|^2_g = 1 \quad (4.48)$$

In the following we find the relation between the Hamiltonian field X_S and the geodesic flow \dot{c}.

Applying (2.26),

$$K(K(U)) = \Omega(X_1, X_2)K(J(U))$$

$$= \Omega(X_1, X_2)^2J^2(U) = -\Omega(X_1, X_2)^2U$$

or

$$K^2 = -\Omega(X_1, X_2)^2I d \quad (4.49)$$

Using (4.49)

$$X_S = -\Omega(X_1, X_2)^{-2}K^2(X_S)$$

$$= -\Omega(X_1, X_2)^{-2}K(\dot{c}) = -\Omega(X_1, X_2)^{-1}J(\dot{c})$$

or

$$\dot{c} = \Omega(X_1, X_2)J(X_S) \quad (4.50)$$

5 A few examples of sub-Riemannian manifolds

5.1 The Heisenberg group \mathbb{H}_1

The Heisenberg group constitutes the paradigm of the theory. The 3-dimensional Heisenberg group can be realized as $\mathbb{H}_1 = \mathbb{R}^3 \times \mathbb{R} = \{(x, t)\}$ endowed with the group law

$$(x, t) * (x', y') = (x + x', t + t' + 2x_2x_1' - 2x_1x_2') \quad (5.51)$$
The vector fields which generate the nonintegrable distribution \mathcal{H} are

$$
X_1 = \partial_{x_1} + 2x_2 \partial_t, \quad X_2 = \partial_{x_2} - 2x_1 \partial_t, \quad T = \partial_t
$$

They are left invariant with respect to the group law and generate the Lie algebra of \mathbb{IH}_1. The 1-form is

$$
\omega = dt - 2x_2 \dot{x}_1 + 2x_1 \dot{x}_2
$$

and the curvature 2-form is

$$
\Omega = 4 dx_1 \wedge dx_2
$$

and

$$
\Omega(X_1, X_2) = 4
$$

and the curvature given by (2.26) becomes

$$
\mathcal{K}(U) = 4\mathcal{J}(U), \quad \forall U \in \mathcal{H}
$$

The Euler-Lagrange equation is

$$
\ddot{x} = 4\theta \mathcal{J}(\dot{x}).
$$

5.2 The $(2n+1)$-dimensional Heisenberg group \mathbb{IH}_n

The $2n$-vector fields are defined on \mathbb{R}^{2n+1} as

$$
X_k = \partial_{x_k} + B_k(x) \partial_t, \quad k = 1, 2, \ldots, 2n
$$

where

$$
B_j(x) = \sum_{k=1}^{2n} 2a_{jk} x_k
$$

or $B = 2Ax$ where A is a skew-symmetric non-singular matrix. The 1-form of connection in this case is

$$
\omega = dt - 2Ax dx
$$

Then the 2-form becomes

$$
\Omega = d\omega = 2 \sum_{p,j=1}^{2n} a_{pj} dx_p \wedge dx_j = -2\langle A dx, dx \rangle
$$
A computation shows that the curvature along a horizontal vector field U is

$$K(U) = - \sum_{k,p=1}^{2n} 4a_{pk} U^k X_p$$

(5.62)

The Euler-Lagrange equation system of equations is given by

$$\ddot{x} = -4\theta K(\dot{x})$$

(5.63)

5.3 A step 4 case

Consider the vector fields

$$X_1 = \partial_{x_1} + 4x_2|x|^2 \partial_t, \quad X_2 = \partial_{x_2} - 4x_1|x|^2 \partial_t$$

(5.64)

which define the 1-form

$$\omega = dt - 4|x|^2(x_2 dx_1 - x_1 dx_2)$$

(5.65)

Then

$$\Omega = 16|x|^2 dx_1 \wedge dx_2$$

(5.66)

The curvature becomes

$$K(U) = 16|x|^2 J(U), \quad \forall U \in \mathcal{H}$$

(5.67)

The Euler-Lagrange system is

$$\ddot{x} = 16\theta|x|^2 J(\dot{x})$$

(5.68)

5.4 A step 3 case

The vector fields

$$X_1 = \partial_{x_1} + \frac{x_2}{2} \partial_t, \quad X_2 = \partial_{x_2}$$

(5.69)

define the Martinet distribution on \mathbb{R}^3. Then

$$\omega = dt - \frac{1}{2} x_2^2 dx_1$$

(5.70)

and

$$\Omega = x_2 dx_1 \wedge dx_2$$

(5.71)

The curvature is

$$K(U) = x_2 J(U)$$

(5.72)
References

Ovidiu Calin
Eastern Michigan University
Department of Mathematics
Ypsilanti, MI, 48197, USA
ocalin@emunix.emich.edu

Vittorio Mangione
Università degli Studi di Parma
43100, Parma, Via M. D’Azeglio, 85/A, Italia
vittorio.mangione@unipr.it