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Abstract. We prove that any subset of R2 parametrized by a C1 periodic
function and its derivative is the Euclidean invariant signature of a closed
planar curve. This solves a problem posed by Calabi et al. in [6]. Based on the
proof of this result, we then develop some cautionary examples concerning the
application of signature curves for object recognition and symmetry detection
as proposed in [6].

1. Introduction

Let γ : I ⊂ R → R2 be a unit-speed curve defined on some open interval I.
The corresponding Euclidean invariant signature is the set S ⊂ R2 parametrized
by (κ, κ̇), where κ is the curvature of γ and κ̇ is its derivative. Recently, this
notion has received considerable attention in computer vision, mostly in the issues
of object recognition and symmetry detection (cf. [5], [3], [4], [6], [1], [17], [13], and
the literature therein). It has also played a relevant role in the study of invariant
variational problems of differential geometry and mathematical physics (cf. [12],
[14], [11], [15], [16], [9]). In [6], Section 5, Calabi et al. indicated as a fundamental
open problem the characterization of those subsets of R2 which are the signatures
of closed curves. It is clear that the signature of a closed curve is a closed phase
portrait, that is, a subset of R2 parametrized by a periodic function of class at least
C1 and its derivative (cf. [12]). The main purpose of this paper is to prove the
following result.

Theorem 1. Any closed phase portrait which does not degenerate into a single
point is the Euclidean signature of a 1-parameter family of non congruent unit-
speed closed curves of class at least C3.

The characterization of those phase portraits which correspond to simple closed
curves still remains an open problem.

The idea of using the signature in computer vision relies on the paradigm that
the signature fully determines the shape of the curve and, via the index of the
signature map,1 the order of its symmetry group (cf. [6], [1], [17], [18], [19]). A
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thorough analysis of Theorem 1 points out possible difficulties in the application
of the signature method if interpreted too broadly. In fact, based on the proof of
Theorem 1, we provide a general procedure to construct families of closed curves of
class C3, not necessarily simple, with the same signature, but which are not con-
gruent to each other because of different length. Moreover, numerical experiments
show that a non-convex simple closed curve with non-trivial symmetry group pos-
sesses a continuous deformation through simple, non-convex, closed curves with the
same signature but different length. A natural question is whether, in the smooth
category, there exist isosigned deformations of non-congruent, convex, simple closed
curves with equal length. We answer this question in Section 4, where a detailed
study of simple closed curves with symmetries leads to the following result.

Theorem 2. There exist 1-parameter families {Γr}r∈[0,η) of smooth strictly convex
simple closed curves which have the same signature and are not congruent. More-
over, these families can be constructed so that Γ0 is not locally congruent to Γr, for
each r ∈ (0, η).

The isosigned curves of a deformation {Γr} all have the same length, symmetry
group and index. By further specializing the proof of Theorem 2, it is also possi-
ble to construct deformations whose isosigned curves all have the same length and
symmetry group, but different indices. A problem that remains open is to char-
acterize, within the class of simple closed curves without symmetries, those curves
whose shape is uniquely determined by the signature. In Section 5, we deal with
the question of symmetry detection and prove the following theorem.

Theorem 3. Let G1, G2 ⊂ SO(2) be two finite subgroups of order q1 and q2,
respectively. Then, there exist smooth simple closed curves Γ1 and Γ2 with the same
signatures, the same indices, and with symmetry groups G1 and G2, respectively.
In particular, if G1 6= G2, the curves cannot be congruent to each other.

The proof is based on the construction of a special family of smooth simple closed
curves (the “cogwheels”) which have identical signatures, but are not congruent to
each other. Yet the curves of this family are locally congruent by construction.2

The above results tell that some caution is needed in the application of signature
curves to object recognition and symmetry detection as proposed by Calabi et al.
[6]. Actually, that the signature uniquely determines the original curve up to a
rigid motion is certainly true in the real-analytic category, in the sense that two
real-analytic curves with the same signature are congruent to each other. It is
also true for (non closed) curves of class at least C4 and with no vertices. More
generally, the possibility of reconstructing the curve from its signature requires that
the signature have constant rank along the curve (cf. the regularity hypothesis of
Theorem 14.9 in [8] and Theorem 5.2 in [6]). Observe that our counterexamples
do not satisfy this regularity assumption. As suggested by one of the referees, it
is likely that the signature would uniquely determine the shape of a smooth closed
curve under additional information on the connected components of the vertex set
(number and measure of the components) and the main global invariants (order of

2We recall that two curves Γ1 and Γ2 are locally congruent if, for each p1 ∈ Γ1 and p2 ∈ Γ2,
there exist open neighborhoods U1,U2 ⊂ R2 of p1 and p2, respectively, and F1 ∈ E(2) such
that F1(Γ1 ∩ U1) = Γ2 ∩ U2, and conversely, for each p2 ∈ Γ2 and p1 ∈ Γ1, there exist open
neighborhoods U1,U2 ⊂ R2 of p1 and p2, respectively, and F2 ∈ E(2) such that F2(Γ2 ∩ U2) =
Γ1 ∩ U1.
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the symmetry group, length and turning number). Similar considerations can be
made for the question of symmetry detection. In particular, if the curve is analytic,
the symmetry result stated in [6] holds true.

The paper is organized as follows. Section 2 recalls the basic definitions and
collects some preliminary results. Section 3 proves Theorem 1, develops the general
construction of isosigned deformations and discusses some numerical experiments.
Section 4 proves Theorem 2. Section 5 first discusses a special class of simple closed
curves, the “cogwheels”, and then proves Theorem 3.

Acknowledgments. We would like to thank the referees for their useful comments
and suggestions.

2. Preliminaries

In this section we collect some preliminary results about plane curves and recall
the basic definitions.

2.1. Preliminary results. Let γ : [0, L] → R2 be a parametrization by arclength
of an immersed curve Γ ⊂ R2 of class Ch, h ≥ 3. Then, for each s ∈ [0, L],
(γ̇(s), Jγ̇(s)) is a positively oriented orthonormal basis of R2 with the usual orien-
tation. Here the dot denotes the derivative with respect to the arc element and J
the counterclockwise rotation by π/2 in the plane. For simplicity, we also require
that γ(0) coincides with the origin of R2, so that the arclength parametrization is
completely determined. The unit tangent vector γ̇(s) satisfies the Frenet equations

γ̈(s) = κ(s)Jγ̇(s),

where κ(s) = 〈γ̈(s), Jγ̇(s)〉 is the (signed) curvature function. If the function
κ is given in advance, the Frenet equations together with the initial conditions
γ(0) = (0, 0) and γ̇(0) = e1 = (1, 0), can be solved explicitly. The arclength
parametrization of the associated curve Γ is given by

γ(s) =
∫ s

0

eiθ(u)du,

where

θ(s) =
∫ s

0

κ(u)du

is the angle of inclination. Any other curve Γ∗ with curvature κ as a function of the
arclength is congruent to Γ, i.e. there exists a rigid motion of the plane, A ∈ E(2),
such that Γ∗ = A(Γ).

Let Γ ⊂ R2 be a closed non-circular immersed curve of class Ch, h ≥ 3. Then Γ
admits an arclength parametrization γ : R→ R2 that is periodic of minimal period
L, being L the length of the curve. If, in addition, γ is injective on [0, L), then Γ
is a simple closed curve, that is, Γ is embedded and diffeomorphic to S1. If Γ is a
closed curve, then the following conditions hold:

(1) κ(s) is periodic function of class Ch−2, with minimal period ` dividing L;
(2) the total curvature

∫ L

0
κ(u)du is an integral multiple of 2π;

(3) The vector
∫ L

0
eiθ(u)du vanishes identically.

Remark 1. In fact, conditions (1), (2) and (3) are also sufficient for closedness (cf.
the proof of Lemma 4, or [10]).
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The minimal period ` is called the reduced length of the curve, while the positive
integer q such that L = q` is referred to as the index of symmetry of the curve. If
q = 1, the curve is said irreducible; otherwise, reducible. The integer p such that

∫ L

0

κ(u)du = 2πp

is the turning number of the curve. It is well-known that for a positively-oriented
simple closed curve the turning number p = 1.

We will need the following technical lemma.3

Lemma 4. Let κ : R → R be a periodic function of class Ch−2, h ≥ 3, with
minimal period `, and assume that

(2.1)
1
2π

∫ `

0

κ(u)du =
p

q
∈ Q \ Z,

where q > 1 and p are two relatively prime integers. Then, the corresponding
unit-speed curve γ is closed of length L = q`.

Proof. Since the problem is invariant under dilations, the discussion can be reduced
to the case where κ has minimal period ` = 2π and Fourier expansion

(2.2) κ(s) =
p

q
+

∞∑
n=1

(an cosns + bn sin ns) .

If we set

(2.3) θ(s) =
p

q
s +

∞∑
n=1

(
an

n
sin ns− bn

n
cosns

)
,

then the curve defined by κ is given by

(2.4) γ(s) =
∫ s

0

eiθ(u)du.

It follows from (2.3) and (2.4) that

(2.5) γ(s + 2π) = e2πi p
q γ(s) + E ,

where

E =
∫ `

0

eiθ(u)du.

Proceeding inductively, we have

(2.6) γ(s + 2mπ) = e2πi p
q m

(
γ(s) + E

m∑

h=1

e−2iπh p
q

)
, m ∈ Z.

Substitution of

(2.7)
m∑

h=1

e−2iπ p
q = e−i(m+1)π p

q csc
(

πp

q

)
sin

(
mπp

q

)
, m ∈ Z,

into (2.6) yields

(2.8) γ(s + 2mπ) = e2imπ p
q (γ(s)− C) + C, m ∈ Z,

3Though elementary, we could not find a proof of this result in the literature. Some related
material is given in [7], [2].
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where

C =
i

2
csc

(
πp

q

)
e−iπ p

q E .

This completes the proof of the lemma. ¤

Remark 2. The curve γ has turning number p and center of symmetry C.

More specifically, we can get sufficient conditions for a curve with strictly positive
periodic curvature being closed and simple. This will be used in the proof of
Theorem 2.

Corollary 5. Let κ : R → R be a smooth strictly positive periodic function with
minimal period ` = 2π such that

(2.9)
1
2π

∫ 2π

0

k(u)du =
1
q
,

where q > 1 is an integer. Then the corresponding unit-speed curve γ is closed and
simple of length L = 2qπ.

Proof. It follows from Lemma 4 that

γ(s + 2qπ) = γ(s),

which implies that γ is closed of length L = 2qπ and with turning number

p =
θ(L)− θ(0)

2π
=

1
2π

∫ L

0

κ(u)du = 1.

Suppose now that γ is not simple. Then, after possibly a change of the form
s → s + a, we may assume that there exists s1 ∈ (0, L) such that γ(0) = γ(s1). We
now get a contradiction, and hence the proof of the lemma, by proving that

1
2π

∫ s1

0

κ(u)du >
1
2
,

1
2π

∫ L

s1

κ(u)du >
1
2
.

Up to the action by a rigid motion, we may assume that

γ(0) = (0, 0), γ′(0) = (1, 0).

Then, if γ(s) = (x(s), y(s)), the smooth function

s ∈ [0, s1] 7→ y(s) ∈ R
is such that y(0) = y(s1) = 0 and y(s) > 0 for some s ∈ (0, s1). Then it attains
a maximum at some s2 ∈ (0, s1). Thus, y′(s2) = 0, i.e. γ′(s2) = ±(1, 0). Since
κ is strictly positive, the angular function θ is strictly increasing, which implies
γ′(s2) = (1, 0), that is θ(s2) = π. This yields the first inequality. The second
inequality follows by the same argument. ¤

Remark 3. By a symmetry of the parametrized immersed curve γ : R → Γ ⊂ R2

it is meant an element A ∈ E(2) such that A(γ(t)) = γ(t + `A), `A ∈ R. The
group G(γ) of all such symmetries is a subgroup of G(Γ), the group consisting of
all A ∈ E(2) such that A(Γ) = Γ.

If Γ is a closed curve with index of symmetry q > 1, the integer q is the order of
the group G(γ) that consists of all rotations by multiples of the angle ω = 2πp/q
about a fixed point C. The subset Γ0 = γ([0, `)) ⊂ Γ is the fundamental domain
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of Γ with respect to the action of G(γ). If the curve is irreducible, then Γ0 = Γ;
otherwise, Γ is obtained from the fundamental domain via G(γ),

Γ =
⋃

A∈G(γ)

A(Γ0).

If Γ is a simple closed curve, the group G(γ) coincides with G(Γ), and the set
of its symmetries is a finite subgroup of rotations around a point. Its cardinality is
the order of symmetry of the curve.

2.2. Signature and index.

Definition 1. Let γ : t ∈ R → γ(t) ∈ R2 be a parametrized immersed curve of
class Ch. The signature map associated to γ is the mapping of class Ch−3 defined
by

σγ : t ∈ R 7→
(

κ(t),
1

‖γ′(t)‖κ′(t)
)
∈ R2,

where the prime denotes the derivative with respect to the parameter t and

κ(t) = 〈γ′′(t), Jγ′(t)〉/‖γ′(t)‖3

is the curvature function of the parametrized curve γ. The image of σγ will be
denoted by S(γ) and referred to as signature of the parametrized curve γ.

Definition 2. The index of the signature map σγ is given by

indσγ = min
{
#σ−1

γ (ζ) | ζ ∈ S(γ)
}

.

For a simple closed curve Γ, the set S(γ) is independent of the parametrization
γ of Γ. This set is referred to as the Euclidean signature curve associated with Γ.
It is characterized by its parametrization in terms of κ(s) and κ̇(s) with respect to
the arc element:

S(Γ) := {(κ(s), κ̇(s)) : s ∈ R} ⊂ R2.

Remark 4. If Γ is closed but not simple, then S(γ) depends on the equivalence class
of the parametrization γ of Γ. For example, the curve drawn in Figure 1 admits
non-equivalent parametrizations with different signatures. Note that this curve has
non-transversal self-intersections. It is likely that one can canonically associate a
signature curve to any closed curve with transversal self-intersections. Though, we
have not a proof of this fact.

Remark 5. The signature curve of a simple closed curve is invariant under the
action of the Euclidean group, that is, if Γ and Γ′ are two congruent simple closed
curves, then the corresponding signatures coincide.

Remark 6. Let f1, f2 : R → R be two smooth functions. We say that f1 is a
first-order deformation of f2 if for each t1 ∈ R there exists t2 ∈ R such that
f1(t1) = f2(t2) and f ′(t1) = f ′2(t2). Observe that the unit-speed parametrized
curves corresponding to curvature functions which are first-order deformations of
each other have identical signatures.

Remark 7. The signature of a closed unit-speed parametrized curve of class at least
C3 is a subset of R2 parametrized by a periodic function of class at least C1 and
its derivative, a closed phase portrait.
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Figure 1

Figure 2. A curve admitting non-equivalent parametrizations
with different signatures.

Finally, if γ : R → R2 is a Ch parametrized immersion, we recall that γ(t0) is
a vertex of γ if t0 is a critical point of the curvature, i.e. κ′(t0) = 0, t0 ∈ R . If
κ(t) = const, for t1 ≤ t ≤ t2, all the γ(t) are vertices. If γ(t0) is a vertex, then

σγ(t0) ∈ S(γ) ∩ {x-axis}.
Moreover, γ(t0) is called an inflection point of γ if κ(t0) = 0. If γ(t0) is an

inflexion point, then
σγ(t0) ∈ S(γ) ∩ {y-axis}.

3. Theorem 1: Proof and consequences

3.1. Proof of Theorem 1. Let S ⊂ R2 be a closed phase portrait parametrized by
(κ, κ̇), where κ is a non-constant periodic function of class C1 with minimal period
`. Using the invariance under dilations we may assume ` = 2π. Possibly translating
the independent variable, we may also assume that κ(s) attains its maximum κ0 at
s = 0 and its minimum κ1 at s1 ∈ (0, 2π). Set

a0 =
1
2π

∫ 2π

0

κ(u)du

and choose a positive constant m and two relatively prime integers q > 1 and p,
such that the line Λ of equation

κ1mx− κ0y + 2π

(
p

q
− a0

)
= 0

intersects the positive quadrant

Q =
{
(x, y) ∈ R2 |x > 0, y > 0

}
.

For instance, it is enough to take p and q such that

2π

κ1

(
p

q
− a0

)
> 0.
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Define

δ1(r) = mr,

δ0(r) =
2π

κ0

(
p

q
− a0

)
− κ1

κ0
mr.

Since Λ ∩ Q 6= ∅, δ0 is positive on a closed interval I = [0, η] ⊂ R+, η > 0. Next,
for each r ∈ I, let K(−, r) be the C1 periodic function, with minimal period

`r = 2π + δ0(r) + δ1(r),

defined by

K(s, r) =





κ0, s ∈ [0, δ0(r)],
κ(s− δ0(r)), s ∈ [δ0(r), s1 + δ0(r)],
κ1, s ∈ [s1 + δ0(r), s1 + δ0(r) + δ1(r)],
κ(s− δ0(r)− δ1(r)), s ∈ [s1 + δ0(r) + δ1(r), `r].

From the definition of K(−, r), we have

1
2π

∫ `r

0

K(u, r)du =
p

q
.

By Lemma 4, the corresponding unit-speed curve γr is of class C3 and closed, but
non necessarily simple. Moreover, since γr has length Lr = q`r, the curves of the
family {γr}r∈I are not congruent to each other. By definition, all the signature
maps

σr : s ∈ R 7→ σr(s) = (K(s, r), ∂sK(s, r)) → R2,

have the given phase portrait S as their signature. This concludes the proof.

3.2. Consequences: An explicit construction. Let γ be a unit-speed closed
planar curve. The proof of Lemma 4 indicates an explicit method to construct a
1-parameter family of closed curves {γr}r∈I which have the same signature curve
of γ but are not congruent to each other. The construction can be summarized as
follows:

• Take a Cn periodic function f of period 2π, with n ≥ 1 satisfying
∫ 2π

0

f(u)du = 0

and {
m0 = max{f(s) : s ∈ [0, 2π]} > 0,
m1 = min{f(s) : s ∈ [0, 2π]} < 0.

• Find s0, s1 ∈ [0, 2π) such that f(s0) = m0 and f(s1) = m1. Without loss
of generality we may assume s0 < s1.

• For each r ≥ 0, put

δ0(r) = −m1 · r, δ1(r) = m0 · r, `r = δ0(r) + δ1(r) + 2π.

For every a, b ∈ R, a < b, denote by B(−|a, b) : R → R the unit-step
function

B(s|a, b) =
{

1, s ∈ [a, b],
0, s /∈ [a, b].
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For each r > 0, consider the functions fj(−, r) : R→ R, j = 1, . . . , 5, given
by 




f1(s, r) = B(s|0, s0)f(s),
f2(s, r) = B(s|s0, δ0(r) + s0)m0,
f3(s, r) = B(s|s0 + δ0(r), s1 + δ0(r))f(s),
f4(s, r) = B(s|s1 + δ0(r), s1 + δ0(r) + δ1(r))m1,
f5(s, r) = B(s|s1 + δ0(r) + δ1(r), `r)f(s).

Set

F0(s, r) =
5∑

i=1

fi(s, r).

This is a piecewise Cn function such that supp (F0(−, r)) ⊂ [0, `r]. Next,
define

F (s, r) =
∑

j∈Z
F0(s− j · `r, r).

The function F (−, r) : R→ R is of class at least C1 and periodic of period
`r. If f is smooth and s0, s1 are critical points of order h ≥ 1 (i.e. all
the derivatives f (i) vanish at s0 and s1, for every i ≤ h), then F (−, r) is
of class Ch. In particular, one can construct smooth (but obviously non
real-analytic) examples.

• Choose two relatively prime integers p, q, with q > 1 and set

K(s, r) = F (s, r) +
2π · p
`r · q .

Then K(−, r) is a periodic function of period `r such that

1
2π

∫ `r

0

K(u, r)du =
p

q
.

• From Lemma 2, it follows that the unit-speed curve γr defined by the
curvature function K(−, r) is closed and of class at least C3. All the curves
of this family have the same signature but are not congruent to each other.

• Solve the Frenet system

ẋ = y, ẏ = K(s, r)z, ż = −K(s, r)y

with standard numerical routines (in most cases it is enough to use the
Runge–Kutta method).

• Compute the numerical approximations of γr and proceed with the visual-
ization.

3.3. Numerical examples and experimental evidences. We now analyze two
examples and show how to implement standard numerical routines in our general
scheme. The programs for the numerical computations and for the visualization
have been performed with the software Mathematica 6. For completeness, we add
the main steps of the program used for the computations and the visualization.

Example 1. Start with the periodic function

f(s) =
1
2
(sin(s)− cos(3s))

Step I. Define f and compute m0, m1, s0 and s1:
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f [s ]:=(1/2)(Sin[s]− Cos[3s]);f [s ]:=(1/2)(Sin[s]− Cos[3s]);f [s ]:=(1/2)(Sin[s]− Cos[3s]);
NMX:=NMaximize[{f [s], 0 ≤ s < 2Pi}, {s}, Method → "DifferentialEvolution"];NMX:=NMaximize[{f [s], 0 ≤ s < 2Pi}, {s}, Method → "DifferentialEvolution"];NMX:=NMaximize[{f [s], 0 ≤ s < 2Pi}, {s}, Method → "DifferentialEvolution"];
NMN:=NMinimize[{f [s], 0 ≤ s < 2Pi}, {s},Method → "DifferentialEvolution"];NMN:=NMinimize[{f [s], 0 ≤ s < 2Pi}, {s},Method → "DifferentialEvolution"];NMN:=NMinimize[{f [s], 0 ≤ s < 2Pi}, {s},Method → "DifferentialEvolution"];
m0:=Evaluate[NMX[[1]]];m1:=Evaluate[NMN[[1]]];m0:=Evaluate[NMX[[1]]];m1:=Evaluate[NMN[[1]]];m0:=Evaluate[NMX[[1]]];m1:=Evaluate[NMN[[1]]];
s0:=Evaluate[NMX[[2]][[1, 2]]];s0:=Evaluate[NMX[[2]][[1, 2]]];s0:=Evaluate[NMX[[2]][[1, 2]]];
s1:=Evaluate[NMN[[2]][[1, 2]]];s1:=Evaluate[NMN[[2]][[1, 2]]];s1:=Evaluate[NMN[[2]][[1, 2]]];

Step II. Choose p and q, set δ0(r) = −m1r and δ1(r) = m0r and define the periods
`r. Then define the 1-parameter family of periodic functions K(−, r) as explained
in the general scheme and visualize the graphs of the functions:

p:=− 1; q:=5;p:=− 1; q:=5;p:=− 1; q:=5;
δ0[r ]:=− r ∗m1; δ1[r ]:=r ∗m0;δ0[r ]:=− r ∗m1; δ1[r ]:=r ∗m0;δ0[r ]:=− r ∗m1; δ1[r ]:=r ∗m0;
`[r ]:=Evaluate[2Pi + δ1[r] + δ0[r]];`[r ]:=Evaluate[2Pi + δ1[r] + δ0[r]];`[r ]:=Evaluate[2Pi + δ1[r] + δ0[r]];
B[s , m , n ]:=UnitStep[s−m] ∗ (1−UnitStep[s− n]);B[s , m , n ]:=UnitStep[s−m] ∗ (1−UnitStep[s− n]);B[s , m , n ]:=UnitStep[s−m] ∗ (1−UnitStep[s− n]);
f1[s , r ]:=B[s, 0, s0] ∗ f [s];f1[s , r ]:=B[s, 0, s0] ∗ f [s];f1[s , r ]:=B[s, 0, s0] ∗ f [s];
f2[s , r ]:=B[s, s0, δ0[r] + s0] ∗m0;f2[s , r ]:=B[s, s0, δ0[r] + s0] ∗m0;f2[s , r ]:=B[s, s0, δ0[r] + s0] ∗m0;
f3[s , r ]:=B[s, δ0[r] + s0, δ0[r] + s1] ∗ f [s− δ0[r]];f3[s , r ]:=B[s, δ0[r] + s0, δ0[r] + s1] ∗ f [s− δ0[r]];f3[s , r ]:=B[s, δ0[r] + s0, δ0[r] + s1] ∗ f [s− δ0[r]];
f4[s , r ]:=B[s, δ0[r] + s1, δ0[r] + δ1[r] + s1] ∗m1;f4[s , r ]:=B[s, δ0[r] + s1, δ0[r] + δ1[r] + s1] ∗m1;f4[s , r ]:=B[s, δ0[r] + s1, δ0[r] + δ1[r] + s1] ∗m1;
f5[s , r ]:=B[s, δ0[r] + δ1[r] + s1, `[r]]f [s− δ0[r]− δ1[r]];f5[s , r ]:=B[s, δ0[r] + δ1[r] + s1, `[r]]f [s− δ0[r]− δ1[r]];f5[s , r ]:=B[s, δ0[r] + δ1[r] + s1, `[r]]f [s− δ0[r]− δ1[r]];
F0[s , r ]:=f1[s, r] + f2[s, r] + f3[s, r] + f4[s, r] + f5[s, r];F0[s , r ]:=f1[s, r] + f2[s, r] + f3[s, r] + f4[s, r] + f5[s, r];F0[s , r ]:=f1[s, r] + f2[s, r] + f3[s, r] + f4[s, r] + f5[s, r];
F [s , r ]:=Sum[F0[s− j ∗ `[r], r], {j,−q, q}];F [s , r ]:=Sum[F0[s− j ∗ `[r], r], {j,−q, q}];F [s , r ]:=Sum[F0[s− j ∗ `[r], r], {j,−q, q}];
K[s , r ]:=F [s, r] + 2Pi∗p

`[r]∗q ;K[s , r ]:=F [s, r] + 2Pi∗p
`[r]∗q ;K[s , r ]:=F [s, r] + 2Pi∗p
`[r]∗q ;

(*Visualization*)(*Visualization*)(*Visualization*)
VK[r ]:=ParametricPlot[{s,K[s, r]}, {s, 0, `[r]− 10∧(−5)},VK[r ]:=ParametricPlot[{s,K[s, r]}, {s, 0, `[r]− 10∧(−5)},VK[r ]:=ParametricPlot[{s,K[s, r]}, {s, 0, `[r]− 10∧(−5)},
PlotStyle → {{Thickness[0.006], Blue}},PlotStyle → {{Thickness[0.006], Blue}},PlotStyle → {{Thickness[0.006], Blue}},
PlotRange → All, ImageSize → {400, 200}];PlotRange → All, ImageSize → {400, 200}];PlotRange → All, ImageSize → {400, 200}];
GraphicsGrid[{{VK[0], VK[1]}, {VK[2],VK[2.78]}, {VK[3.2], VK[6]}},GraphicsGrid[{{VK[0], VK[1]}, {VK[2],VK[2.78]}, {VK[3.2], VK[6]}},GraphicsGrid[{{VK[0],VK[1]}, {VK[2],VK[2.78]}, {VK[3.2], VK[6]}},
Frame → All]Frame → All]Frame → All]
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2 4 6 8 10
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�0.5
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5 10 15�1.0
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Figure 3. K(−, r), r = 0, 1, 2.78, 3.2, 6.

Step III. Compute and visualize the signature:
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MDk[S , r ]:=D[K[S, r], S];MDk[S , r ]:=D[K[S, r], S];MDk[S , r ]:=D[K[S, r], S];
SG[S , r ]:=Evaluate[{K[S, r], MDk[S, r]}];SG[S , r ]:=Evaluate[{K[S, r], MDk[S, r]}];SG[S , r ]:=Evaluate[{K[S, r], MDk[S, r]}];
(*Visualization*)(*Visualization*)(*Visualization*)
VisualizeSignature[r ]:=ParametricPlot[SG[s, r], {s, 0, `[r]},VisualizeSignature[r ]:=ParametricPlot[SG[s, r], {s, 0, `[r]},VisualizeSignature[r ]:=ParametricPlot[SG[s, r], {s, 0, `[r]},
PlotStyle → {{Thickness[0.006], Blue}}, Axes → True,AspectRatio → 1/1.1,PlotStyle → {{Thickness[0.006], Blue}}, Axes → True,AspectRatio → 1/1.1,PlotStyle → {{Thickness[0.006], Blue}}, Axes → True,AspectRatio → 1/1.1,
PlotPoints → 100, PlotRange → All, ImageSize → {400, 400}];PlotPoints → 100, PlotRange → All, ImageSize → {400, 400}];PlotPoints → 100,PlotRange → All, ImageSize → {400, 400}];
VisualizeSignature[0]VisualizeSignature[0]VisualizeSignature[0]

�1.0 �0.5 0.5

�2

�1

1

2

Figure 4. The signature of the family.

Step IV. Solve the Frenet system and visualize the curves of the family:

solution[1][r ]:=solution[1][r ]:=solution[1][r ]:=
NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == K[t, r] ∗ z[t], y[0] == 1,NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == K[t, r] ∗ z[t], y[0] == 1,NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == K[t, r] ∗ z[t], y[0] == 1,
z′[t] == −K[t, r] ∗ y[t], z[0] == 0}, {x, y, z}, {t, 0, 2 ∗ q ∗ `[r]}];z′[t] == −K[t, r] ∗ y[t], z[0] == 0}, {x, y, z}, {t, 0, 2 ∗ q ∗ `[r]}];z′[t] == −K[t, r] ∗ y[t], z[0] == 0}, {x, y, z}, {t, 0, 2 ∗ q ∗ `[r]}];
solution[2][r ]:=solution[2][r ]:=solution[2][r ]:=
NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == K[t, r] ∗ z[t], y[0] == 0,NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == K[t, r] ∗ z[t], y[0] == 0,NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == K[t, r] ∗ z[t], y[0] == 0,
z′[t] == −K[t, r] ∗ y[t], z[0] == 1}, {x, y, z}, {t, 0, q ∗ `[r]}];z′[t] == −K[t, r] ∗ y[t], z[0] == 1}, {x, y, z}, {t, 0, q ∗ `[r]}];z′[t] == −K[t, r] ∗ y[t], z[0] == 1}, {x, y, z}, {t, 0, q ∗ `[r]}];
S[1][t , r ]:={x[t], y[t], z[t]}/.solution[1][r];S[1][t , r ]:={x[t], y[t], z[t]}/.solution[1][r];S[1][t , r ]:={x[t], y[t], z[t]}/.solution[1][r];
S[2][t , r ]:={x[t], y[t], z[t]}/.solution[2][r];S[2][t , r ]:={x[t], y[t], z[t]}/.solution[2][r];S[2][t , r ]:={x[t], y[t], z[t]}/.solution[2][r];
γ[t , r ]:={S[1][t, r][[1]][[1]], S[2][t, r][[1]][[1]]};γ[t , r ]:={S[1][t, r][[1]][[1]], S[2][t, r][[1]][[1]]};γ[t , r ]:={S[1][t, r][[1]][[1]], S[2][t, r][[1]][[1]]};
(*Visualization*)(*Visualization*)(*Visualization*)
FG[r ]:=ParametricPlot[Evaluate[γ[t, r]], {t, 0, q ∗ `[r]},FG[r ]:=ParametricPlot[Evaluate[γ[t, r]], {t, 0, q ∗ `[r]},FG[r ]:=ParametricPlot[Evaluate[γ[t, r]], {t, 0, q ∗ `[r]},
PlotStyle → {{Thickness[0.006], Blue}}, Axes → True,AspectRatio → Automatic,PlotStyle → {{Thickness[0.006], Blue}}, Axes → True,AspectRatio → Automatic,PlotStyle → {{Thickness[0.006], Blue}}, Axes → True,AspectRatio → Automatic,
PlotPoints → 100, PlotRange → All, ImageSize → {400, 400}];PlotPoints → 100, PlotRange → All, ImageSize → {400, 400}];PlotPoints → 100,PlotRange → All, ImageSize → {400, 400}];
GraphicsGrid[{{FG[0],FG[1],FG[2.78]}, {FG[2.79], FG[3.2], FG[6]}}, Frame → All]GraphicsGrid[{{FG[0],FG[1], FG[2.78]}, {FG[2.79], FG[3.2], FG[6]}}, Frame → All]GraphicsGrid[{{FG[0], FG[1], FG[2.78]}, {FG[2.79], FG[3.2], FG[6]}}, Frame → All]

Remark 8. The curves γr are simple for 0 ≤ r < r0 and have self-intersections
for r ≥ r0, where r0 ≈ 2.79. The curves have symmetry group Z5 and are not
congruent to each other. Moreover γ0 has only isolated vertices, while the set of
vertices of γr, r > 0, has interior points. As a consequence, γ0 and γr, r > 0, are
not locally congruent to each other. Note that, K(s, r) = c0 > 0 on the intervals
[s0 + j · `r, s0 + δ0(r) + j · `r], j = 0, . . . , q − 1. The corresponding arcs are pieces
of convex circles of radius ‖c0‖−1. Similarly, K(s, r) = c1 < 0 on the intervals
[s0 + δ0(r) + j · `r, s1 + δ0(r) + δ1(r) + j · `r]. The corresponding arcs are pieces of
concave circles of radius ‖c1‖−1.



12 EMILIO MUSSO AND LORENZO NICOLODI

�2 2 4 6

�8

�6

�4

�2

�2 2 4 6 8 10

�8

�6

�4

�2

2

�2 2 4 6 8

�4

�2

2

4

6

�2 2 4 6 8

�4

�2

2

4

6

�2 2 4 6

�2

2

4

6

�4 �2 2 4

�8

�6

�4

�2

2

Figure 5. The curves γr, r = 0, 1, 2.78, 3.2, 6.

Example 2. The code can be applied to any other periodic function such that
s0 < s1. For instance, take

f(s) =
1
2

(
sin(s)− cos(3s) +

1
7

cos(7s)− 1
11

sin(11s)
)

and set p = 1, q = 3 (i.e. a family with symmetry group Z3). The graphs of the
curvatures K(−, r), r = 0, 1, 2, 3, 4, 5, the signature and the curves of the family
are given in Figures 6, 7 and 8, respectively.

1 2 3 4 5 6
�0.5

0.5

1.0

2 4 6 8�0.5

0.5
1.0

2 4 6 8 10
�1.0
�0.5

0.5
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2 4 6 8 10 12
�1.0

0.5
1.0

2 4 6 8 10 12 14�1.0

0.5
1.0

5 10 15�1.0

1.0

Figure 6. K(−, r), r = 0, 1, 2, 3, 4, 5.

3.3.1. Conclusions. The previous examples show that the shape of a simple closed
curve is not necessarily determined by its signature and suggest that such a phe-
nomenon holds for any non-convex simple closed curve with a non-trivial symmetry



INVARIANT SIGNATURES 13

�0.5 0.5 1.0

�2

�1

1

2

Figure 7. The signature of the family.
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Figure 8. The curves γr, r = 0, 1, 2, 3, 4, 5.

group. This is in contrast with the claim of Theorem 2.3 in reference [6]. The argu-
ment used in [6] is based on the implicit function theorem, i.e. on the assumption
that the signature can be locally parametrized as the graph of a function. The
argument fails exactly at the points of the signature which correspond to the ver-
tices of the curve, i.e. at the intersections of the signature with the x-axis. In the
next section, we will show that the knowledge of the symmetry group and of the
basic topological and metrical invariants such as length and turning number is not
enough to determine the shape of a simple closed curve by its signature.

4. Isosigned deformations: Proof of Theorem 2

We now turn to the proof of Theorem 2. We shall construct families of isosigned
smooth strictly convex simple closed curves which are not congruent to each other.
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Proof of Theorem 2. Let a > 0 such that η := π−2a > 0, and consider the smooth
non-negative function

f(s) =





0 if s ≤ −a/2,

exp
(

1
s
− 1

s + a/2

)
if − a/2 < s < 0,

0 if s ≥ 0.

Then the function

(4.1) h(s) =

∫ s

−a/2
f(u)du

∫∞
−∞ f(u)du

is non-negative, and takes value 1 for s ≥ 0 and value 0 for s ≤ −a/2. Next, for
each r ∈ [0, η), consider the “plateau” function

hr(s) = h
(
s +

r

2

) [
1− h

(
s− r

2

)]
.

Take ε ∈ (0, 1) and, for each r ∈ [0, η), let κr be the strictly positive periodic
function of minimal period 2π given by

κr(s) =
1
q

+
ε

q

[
hr

(
s− π

2

)
− hr

(
s− 3π

2

)]
, s ∈ [0, 2π).

Let γr : R → R2 be the unit-speed parameterized curve with curvature κr and
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Figure 9. The functions κr for q = 3, ε = 0.9 and r = 0, 0.5, 1, 1.1.

initial conditions
γr(0) = (0, 0), γ̇r(0) = (1, 0).

By construction we have

1
2π

∫ 2π

0

κr(u)du =
1
q
.

From Corollary 5, it follows that γr parametrizes a smooth strictly convex simple
closed curve Γr of length 2qπ. Since the functions {κr}r∈[0,η) are first-order defor-
mations of each other (cf. Remark 6), the curves Γr, r ∈ [0, η), all have the same
signature. On the other hand, for different values of r, the functions κr cannot be
obtained from each other by just a reparametrization of the form s → s + c. Thus,
for r 6= r′, the curves Γr and Γr′ are not congruent to each other. Moreover, Γ0 has
isolated vertices, while the curves Γr, r ∈ (0, η), have only non-isolated vertices.
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Figure 10. The curves with curvatures κr, for q = 3, ε = 0.9 and
r = 0, 0.5, 1, 1.1. The curves have length L = 2qπ.
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Figure 11. The signature of the family.

This implies that Γ0 and Γr cannot be locally congruent, which concludes the proof
of the theorem. ¤

Example 3. Here we give the source codes related to Figures 9, 10 and 11. For
the purpose of numerical computations we replace the function h in (4.1) with a
suitably normalized “error function”.

Step 1. Define the curvature functions κr:

q:=3; a:=0; b:=2 ∗ q ∗ Pi;q:=3; a:=0; b:=2 ∗ q ∗ Pi;q:=3; a:=0; b:=2 ∗ q ∗ Pi;
h[t , r ]:=(1/2)(Erf[(9.5/0.8)(t + r + 0.8)− 6] + 1);h[t , r ]:=(1/2)(Erf[(9.5/0.8)(t + r + 0.8)− 6] + 1);h[t , r ]:=(1/2)(Erf[(9.5/0.8)(t + r + 0.8)− 6] + 1);
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B[t , r , c ]:=h[−t + c, r]h[t− c, r];B[t , r , c ]:=h[−t + c, r]h[t− c, r];B[t , r , c ]:=h[−t + c, r]h[t− c, r];
Bump[t , r ]:=B[t, r,Pi/2]−B[t, r, 3Pi/2];Bump[t , r ]:=B[t, r,Pi/2]−B[t, r, 3Pi/2];Bump[t , r ]:=B[t, r,Pi/2]−B[t, r, 3Pi/2];
k[t , r ]:=(1/q) + (0.9/(q))Sum[(Bump[t− 2j ∗ Pi, r]), {j, 0, q}];k[t , r ]:=(1/q) + (0.9/(q))Sum[(Bump[t− 2j ∗ Pi, r]), {j, 0, q}];k[t , r ]:=(1/q) + (0.9/(q))Sum[(Bump[t− 2j ∗ Pi, r]), {j, 0, q}];
Step 2. Compute the curves γr and the signature of the family:

solution[1][r ]:=NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == k[t, r] ∗ z[t], y[0] == 1,solution[1][r ]:=NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == k[t, r] ∗ z[t], y[0] == 1,solution[1][r ]:=NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == k[t, r] ∗ z[t], y[0] == 1,
z′[t] == −k[t, r] ∗ y[t], z[0] == 0}, {x, y, z}, {t, a, b}];z′[t] == −k[t, r] ∗ y[t], z[0] == 0}, {x, y, z}, {t, a, b}];z′[t] == −k[t, r] ∗ y[t], z[0] == 0}, {x, y, z}, {t, a, b}];
solution[2][r ]:=NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == k[t, r] ∗ z[t], y[0] == 0,solution[2][r ]:=NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == k[t, r] ∗ z[t], y[0] == 0,solution[2][r ]:=NDSolve [{x′[t] == y[t], x[0] == 0, y′[t] == k[t, r] ∗ z[t], y[0] == 0,
z′[t] == −k[t, r] ∗ y[t], z[0] == 1}, {x, y, z}, {t, a, b}];z′[t] == −k[t, r] ∗ y[t], z[0] == 1}, {x, y, z}, {t, a, b}];z′[t] == −k[t, r] ∗ y[t], z[0] == 1}, {x, y, z}, {t, a, b}];
S[1][t , r ]:={x[t], y[t], z[t]}/.solution[1][r];S[1][t , r ]:={x[t], y[t], z[t]}/.solution[1][r];S[1][t , r ]:={x[t], y[t], z[t]}/.solution[1][r];
S[2][t , r ]:={x[t], y[t], z[t]}/.solution[2][r];S[2][t , r ]:={x[t], y[t], z[t]}/.solution[2][r];S[2][t , r ]:={x[t], y[t], z[t]}/.solution[2][r];
γ[t , r ]:={S[1][t, r][[1]][[1]], S[2][t, r][[1]][[1]]};γ[t , r ]:={S[1][t, r][[1]][[1]], S[2][t, r][[1]][[1]]};γ[t , r ]:={S[1][t, r][[1]][[1]], S[2][t, r][[1]][[1]]};
dk[t , r ]:=Evaluate[D[k[t, r], t]];dk[t , r ]:=Evaluate[D[k[t, r], t]];dk[t , r ]:=Evaluate[D[k[t, r], t]];
PP1[t , r ]:=Evaluate[{k[t, r], dk[t, r]}];PP1[t , r ]:=Evaluate[{k[t, r], dk[t, r]}];PP1[t , r ]:=Evaluate[{k[t, r],dk[t, r]}];

5. Symmetries and signatures: Proof of Theorem 3

In this section, we show the impossibility of detecting the symmetries of a simple
closed curve from the index of its signature map. The proof is based on the study of
a special family of smooth simple closed curves arising as boundaries of star-shaped
type domains.

5.1. Cogwheels. Let n be a positive integer and consider the closed intervals

Ij =
[
2(j − 1)π

n
,
2jπ

n

]

so that [0, 2π] =
⋃n

j=1 Ij . For each j ∈ {1, . . . , n} consider a smooth function

rj : R→ R+, supp(rj) ⊂ İj

and assume that among the rj at least one is non constant. Let r0 be a positive
constant and denote by ρ : R→ R+ the unique periodic extension, with period 2π,
of the function

r0 +
n∑

j=1

rj : [0, 2π] → Ṙ+.

Such a ρ will be referred to as an n-bump radial function. Correspondingly, consider
the smooth simple closed curve Γ, parametrized by

γ : t ∈ R 7→ ρ(t)(cos t, sin t) ∈ R2.

Definition 3. The curve Γ is called an n-cogwheel with radial function ρ, inner
radius r0, and ordered bumps (r1, . . . , rn).

The velocity and the curvature of the parametrization γ are given by



v(t) =
√

ρ2 + ρ′2,

κγ(t) =
ρ2 + 2ρ′2 − ρρ′′

(ρ2 + ρ′2)
3
2

.

It follows that the signature of γ is parametrized by signature map

σγ : t 7→ σγ(t) =
(

κ(t),
1

v(t)
κ′(t)

)
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and that the corresponding index is

indσγ = min
{
#σ−1

γ (ζ) | ζ ∈ S(γ), σ−1
γ (ζ) ∈ [0, 2π)

}
.

5.2. Combinatorics of cogwheels. Let µ ∈ Sn be a permutation on {1, . . . , n}.
For each j, j = 1, . . . , n, define the translation

τµ(j)(t) = t +
2(j − µ(j))

n
π

so that τµ(j)(Iµ(j)) = Ij and set µ ·rj = rj ◦τµ(j). Let µ ·ρ be the periodic extension
of

r0 +
n∑

j=1

µ · rj

and denote by µ · γ the corresponding n-cogwheel.

Remark 9. The cogwheel µ·γ is obtained from γ by permuting its cogs. This defines
an action of the symmetric group Sn on the set of n-cogwheels. All the curves µ ·γ,
for µ ∈ Sn, are locally congruent to each other,4 but for a generic choice of the n-
bump radial function ρ they are not globally congruent. This happens, for instance,
if max ri 6= max rj , i 6= j, i, j = 1, . . . , n. In particular, this also implies that the
symmetry groups of cogwheels are not preserved under the action of the symmetric
group.

Lemma 6. The signature and the index of n-cogwheels are invariant under the
action of the symmetric group Sn.

Proof. From µ · ρ|Iµ(j)
= ρ ◦ τµ(j), we have

µ · v(t)|Iµ(j)
= v ◦ τµ(j)

µ · κ|Iµ(j)
= κ ◦ τµ(j).

Therefore,

(5.1) µ · σ|Iµ(j)
= σ ◦ τµ(j), j = 1, . . . , n,

which implies µ · S ⊂ S. Similarly, by interchanging the role of µ · ρ and ρ, we have
that S ⊂ µ · S, and the first assertion is proved. It also follows from (5.1) that the
indices of the signature maps coincide. The proof goes as follows. For each j, let

Ĩj =
[
2(j − 1)π

n
,
2jπ

n

)

so that [0, 2π) is the disjoint union of the Ĩj . Consider the bijection

β : [0, 2π) → [0, 2π)

defined by β|Ĩµ(i)
= τµ(i)|Ĩµ(i)

. Then β induces a bijection between (µ · σ)−1(ζ) ∩
[0, 2π) and σ−1(ζ) ∩ [0, 2π), which proves the required result. ¤
Example 4 (Combinatorics of a cogwheel). Consider the 3-bump radial function
given in Figure 12. The combinatorics of this 3-bump radial function determines
the six configurations given in Figure 13. The corresponding six 3-cogwheels and
their curvatures are represented in Figures 14 and 15, respectively. The signature
of the six 3-cogwheels is made of three pieces (one for each bump). Since the bumps

4This follows from the fact that ρ and µ · ρ are locally congruent, i.e., ∀t0 ∈ R there exists
ε > 0 and t1 ∈ R such that ρ|(t0−ε,t0+ε)(t) = (µ · ρ)(t + t1), and conversely.
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are different from each other, the three pieces are also different and the index of
the signature is 1 (cf. Figure 16). The source codes are given below.

Step 1. Define the 3-bump radial function and its combinatorics. The numer-
ical values are δ = 0.5, n = 3. The integer p = 1, . . . , 6 labels the six possible
configurations:

g[t ]:=(1/2)(Erf[t− 6] + 1);g[t ]:=(1/2)(Erf[t− 6] + 1);g[t ]:=(1/2)(Erf[t− 6] + 1);
h[t , a ]:=g[(9.5/a)t];h[t , a ]:=g[(9.5/a)t];h[t , a ]:=g[(9.5/a)t];
n[t , a , r ]:=h[t + a + r, a];n[t , a , r ]:=h[t + a + r, a];n[t , a , r ]:=h[t + a + r, a];
Bump[t , r , a , c ]:=n[−t + c, a, r]n[t− c, a, r];Bump[t , r , a , c ]:=n[−t + c, a, r]n[t− c, a, r];Bump[t , r , a , c ]:=n[−t + c, a, r]n[t− c, a, r];
L[j , n , p ]:=Permutations[Table[m, {m, 1, n}]][[p]][[j]];L[j , n ,p ]:=Permutations[Table[m, {m, 1, n}]][[p]][[j]];L[j , n ,p ]:=Permutations[Table[m, {m, 1, n}]][[p]][[j]];
r[t , δ ,n , p ]:=r[t , δ ,n , p ]:=r[t , δ , n , p ]:=2.5 + Sum[(0.3 ∗ Cos[(n)(L[j, n, p] + 1) ∗ t])2.5 + Sum[(0.3 ∗ Cos[(n)(L[j, n, p] + 1) ∗ t])2.5 + Sum[(0.3 ∗ Cos[(n)(L[j, n, p] + 1) ∗ t])
Bump[t, (1− δ)Pi/n, δ(Pi/n), (2Pi/n) ∗ (j − 1) + Pi/n], {j, 1, n}];Bump[t, (1− δ)Pi/n, δ(Pi/n), (2Pi/n) ∗ (j − 1) + Pi/n], {j, 1, n}];Bump[t, (1− δ)Pi/n, δ(Pi/n), (2Pi/n) ∗ (j − 1) + Pi/n], {j, 1, n}];
Step 2. Define the cogwheels, their curvatures and the signature:

γ[t , δ ,n , p ]:=r[t, δ, n, p]{Cos[t],Sin[t]};γ[t , δ ,n , p ]:=r[t, δ, n, p]{Cos[t], Sin[t]};γ[t , δ ,n , p ]:=r[t, δ, n, p]{Cos[t], Sin[t]};
v[t , δ , q , p ]:=Sqrt[D[γ[t, δ, q, p], t].D[γ[t, δ, q, p], t]];v[t , δ , q , p ]:=Sqrt[D[γ[t, δ, q, p], t].D[γ[t, δ, q, p], t]];v[t , δ , q , p ]:=Sqrt[D[γ[t, δ, q, p], t].D[γ[t, δ, q, p], t]];
k[t , δ , n , p ]:=k[t , δ ,n , p ]:=k[t , δ ,n , p ]:=
v[t, δ, n, p]−3∗v[t, δ, n, p]−3∗v[t, δ, n, p]−3∗(D[γ[t, δ, n, p][[1]], t] ∗D[D[γ[t, δ, n, p][[2]], t], t]−(D[γ[t, δ, n, p][[1]], t] ∗D[D[γ[t, δ, n, p][[2]], t], t]−(D[γ[t, δ, n, p][[1]], t] ∗D[D[γ[t, δ, n, p][[2]], t], t]−
D[γ[t, δ, n, p][[2]], t] ∗D[D[γ[t, δ, n, p][[1]], t], t]);;;D[γ[t, δ, n, p][[2]], t] ∗D[D[γ[t, δ, n, p][[1]], t], t]);;;D[γ[t, δ, n, p][[2]], t] ∗D[D[γ[t, δ, n, p][[1]], t], t]);;;
dk[t , δ ,n , p ]:=v[t, δ, n, p]−1D[k[t, δ, n, p], t];dk[t , δ ,n , p ]:=v[t, δ, n, p]−1D[k[t, δ, n, p], t];dk[t , δ ,n , p ]:=v[t, δ, n, p]−1D[k[t, δ, n, p], t];
Sgn[t , δ , n ,p ]:={k[t, δ, n, p], dk[t, δ, n, p]};Sgn[t , δ , n , p ]:={k[t, δ, n, p], dk[t, δ, n, p]};Sgn[t , δ ,n , p ]:={k[t, δ, n, p], dk[t, δ, n, p]};

1 2 3 4 5 6
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Figure 12. A 3-bump radial function.

5.3. Proof of Theorem 3. Let G1, G2 be two finite subgroups of SO(2) of order
q1 ≥ 1 and q2 ≥ 1, respectively. Set n = 2q, where q = q1q2, and decompose [0, 2π]
into the union of the n intervals I2k−1, I2k, k = 1, . . . , q. Next, consider two smooth
non-constant functions

r1, r2 : R→ R+, supp(r1) ⊂ İ1, supp(r2) ⊂ İ2

so that
max r1 6= max r2.

Now, define the functions

r2k−1 := r1 ◦ τ2k−1, r2k := r2 ◦ τ2k, k = 1, . . . , q,
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Figure 13. The six configurations of the combinatorics.
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Figure 14. The six 3-cogwheels.

where {
τ2k−1 : t ∈ I2k−1 7→ t− 2(k − 1)π/q ∈ I1,

τ2k : t ∈ I2k 7→ t− 2(k − 1)π/q ∈ I2,
k = 1, . . . , q,

and consider the “fully symmetric” bump function ρ, of period 2π/q, given by the
periodic extension of

r0 +
n∑

j=1

rj ,

where r0 is any assigned non-null constant.
Next, let µ1, µ2 ∈ Sn be the permutations defined by{

µ1(2`− 1) = 2`, µ1(2`) = 2`− 1, ` = q1, 2q1, . . . , q
µ1(`) = k, ` 6= q1, 2q1, . . . , q{
µ2(2`− 1) = 2`, µ2(2`) = 2`− 1, ` = q2, 2q2, . . . , q
µ2(`) = k, ` 6= q2, 2q2, . . . , q
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Figure 15. The curvature functions of the six 3-cogwheels.
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Figure 16. The fundamental pieces of the signature and the signature.

The bump functions µ1 · ρ and µ2 · ρ have period 2π/q2 and 2π/q1, respectively.
This implies that the cogwheel with radial function µ1 · ρ has symmetry group
isomorphic to Zq2 , while the symmetry group of the cogwheel corresponding to
µ2 · ρ is isomorphic to Zq1 . This, together with Lemma 6, completes the proof of
Theorem 3.

Example 5 (Cogwheels with same signatures and indices). Consider the “fully
symmetric” 12-bump radial function of period π/3 given in Figure 17. The four
configurations of this 12-bump function are represented in Figure 18. The first has
period 2π, the second has period π, the third has period 3π/3, and the last one
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Figure 17. The 12-bump radial function.

has period π/3. The four corresponding cogwheels are illustrated in Figure 19,
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Figure 18. The 4 configurations of the 12-bump radial function.

while the respective curvature functions are given in Figure 20. The first cogwheel
curve has trivial symmetry group, the second has symmetry group Z2, the third
has symmetry group Z3, while the last one has symmetry group Z6. The signature
of these four cogwheels has index 6 and is given in Figure 21.
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