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Abstract where each variable describes one coordinate of the point
in the 3D space. Propagation algorithms operate on points
This paper investigates alternativglobal constraints by means of projection of domain information on individual
that can be introduced in a constraint solver over discrete axis. Unfortunately, experimental studies have shown that
crystal lattices. The objective is to enhance the efficiaficy applying constraints separately to the individual coocatis
lattice solvers in dealing with the construction of approxi significantly limits the power opropagationamong points
mate solutions of the protein structure determination prob asindividual objectsrather than as triples of FD variables.
lem. The paper discusses various alternatives and providesThis limits the effective propagation of domain changes per
preliminary results concerning the computational proper- formed along one axis to the other dimensions of the space.
ties of the different global constraints. To address this problem, researchers have developed ad-hoc
constraint solvers (e.g., [10]), whose underlying priviti
domain views lattice points aomic values

1. Introduction In this paper we investigate the problem of introduc-
ing global constraintsn the general context of constraint

Discrete (Crysta|) latticesire formal and discrete mod- SOlVing on discrete lattices. Global constraints allow the
els of the space [17]. They have been frequently adopted toProgrammer to express knowledge about complex relation-
provide formal descriptions of crystal structures of chemi ships between variables, that can be effectively employed
cal compounds, and they have provided valuable insights inPy the search algorithm to prune infeasible parts of the-solu
the study of approximated 3D conformations of molecular tion search space. We introduce different global condsain
structures. A field of application is the approximations of Structured according to the specific properties of finite lat
foldings of protein structures in the 3D space [17, 2, 1, 12]. tices, and motivated by the approximated protein structure
In this context, polymers are laid out in regularly orgadize ~determination problem.

subsets olN®. These subsets are described concisely by the  Some specialized types of global constraints in lattice

vectors that specify the neighbors of each point. spaces have already been considered in [10, 2], while some
The proteln stru_cture determination problem in the con- global constraints in theeal 3D spaceR?) have been used
text of discrete lattice structures has been studiedGsma in [13, 14]. Nevertheless, the literature does not provide

straint Optimization Problenin the Face Centered Cubic a comprehensive study of discrete lattice global congsain
(FCQ lattice—using a simplified pairwise energy model relevant to the protein structure determination problem. |
in [2] and a more precise energy model in [9]. In these this paper we identify some relevant global constraints and
approaches, the position of each amino acid is describedanalyze their computational properties, with respect th bo
by a triplet offinite domain (FD) variableg Py, P, P.), the satisfiability problem and the propagation process. The
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The main contribution of this paper is the identification
and computational characterization which global con-
straints should be introduced in a discrete lattice coimdtra
solver, to enhance its declarativeness and facilitatefthe e
cient resolution of the protein structure determinatiaoipr

Each edge allows a move like a knight on a chess-board,
i.e., 2 units in one direction, 1 in another direction, O ia th
third direction. The chess knight lattice is 24-connected.
The lattice can be used as the underlying structure for a
constraint domain; let us consider the approach explored in

lem. We expect our design to be applicable to any constraintCOLA[10]. In COLA, adomainD is described by a pair of

solver on discrete lattices (e.g., [2, 10]), as well as t@pth

lattice pointslow(D), up(D)). The domairD defines a set

systems that use constraint-based technology to addeess thof lattice points in the 3ox {A € P : low(D), < A, <

protein structure determination problem.
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Figure 1. Components of a Cubic, FCG and
Chess Knight Lattice

2. Crystal Lattices and the Protein Structure
Problem

Let us start by reviewing the formal definitions of dis-
crete crystal lattices and their use in the protein strigctur
determination problem.

A discrete crystal latticéor, simply, alattice) is a graph
(P, E), whereP is a set of triplegx, y, z) € N?, connected
by undirected edgesH)). Given A = (z,y,z) € P, we
will denotex, y, z with A, Ay, A,, respectively. Lattices

contain strong symmetries and regular patterns repeated in

the space. If all the nodes have the same degrdeen the
lattice is said to bé-connectedLet us introduce the follow-
ing preliminary definitions. Thequare Euclidean distance
(sqeuchbetween two 3D points is
sqeucl(A, B) = (By — Az)? + (By — Ay)? + (B, — A,)?
while thenorm infinity distance (norm) is
normeo (A, B) = max{|Bz — Az|, |By — Ayl,|B- — A.|}.
Three examples of lattices are described next.
A cubic lattice( P, E) (Fig. 1(a)) is defined as
P = {(z,9,2)|z,y,2 €N}
E {(A,B) | A, B € P,sqeucl(A,B) = 1}.
The cubic lattice is 6-connected.
A FCClattice (P, F) is characterized by
P {(z,y,2) | z,y,z€ NAx +y + z is ever}
E {(4,B) | A, B € P,sqeucl(A, B) = 2}.

up(D)g,low(D), < A, < up(D)y,low(D), < A, <
up(D).}. Each variablé/ represents an amino acid to be
placed in a point in the lattice space, and it is associated to
a domainDV = (low(DV),up(D")). Various primitive
constraints have been provided, such as:
DIST LEQV1, Va,d) &
AP, € By,3dP; € By S.t.normoo(Pl,Pg) <d
EUCLLEQV1, Vz,d) <
3P, € By,3P; € By s.t.sqeucl(Py, Py) < d
(V1, V5 are variables and, , B, are their boxes).

These lattice structures and constraints have been used
to model the protein structure determination problem. Let
us illustrate, for example, the basic encoding of this prob-
lem in theFCClattice. LetS = s;...s, be the primary
sequence of a protein. We wish to determine a placement of
the amino acids in the lattice; the position of the amino acid
s; is represented by a constraint variable The modeling
leads to the following constraints:

oFor eachl < ¢ < k — 1, we have that
EUCLLEQV;,V;41,2) and EUCLGEQV;,V;,1,2):
adjacent amino acids in the primary sequence are
mapped to lattice points connected by one lattice unit;

oFor each2 < ¢ < k — 1, we have that

EUCLLEQYV;_1,Vi+1,7): three adjacent amino acids

may not form an angle of80° in the lattice;

o For eachl < 4,5 < k and|i — j| > 2, we have that
EUCLGEQV;, V;,4): two non-consecutive amino acids
must be separated by more than one lattice unit,6ad
angles are disallowed for three consecutive amino acids;

o For each knownsbond present between amino acisls
ands;, we have thaDIST _LEQV;, V;, 4).

The energy of the protein is assumed to be given by the
sum of the energies generated by all pairs of amino acids,
and it will depend on their distances and their types. In
particular, we employ the functiotontact to state that
two amino acids;; ands; are sufficiently close to interact,
and thus they contribute to the energy function. InF@C

we state thatontact(A, B) = 1 iff EUCLLEQA, B, 4).

The protein structure determination problem (PS&gn be

The FCClattice is organized in cubes, each side having modeled as the problem of finding an assignment satisfying
length 2, and where the center point of each face is also all these constraints and which minimizes the energy cost

admitted. Thé=CClattice is 12-connected—see Fig. 1(b).
A chess knighFig. 1(c)) lattice is characterized by

P = {(z,9,2)|,y,2 €N}

E {(4,B) | A, B € P, sqeucl(A, B) = 5}.

function:

E(S) = Z Z contact(V;,V;) - Pot(s;,s;)

1<i<k i+2<j<k



wherePot denotes the energy contribution of two amino constraints¢hain constraint, Sect. 3.5, arldlock con-
acids in contact (see e.g. [9]). straint, Sect. 3.6). We also discuss the constidenisity
suggested by protein density map information determined

3. Global constraints via electron cryo-microscopy (Sect. 3.7).

3.1. The alldifferent Constraint

A global constraint is a relation betweenvariables.
Global constraints are very valuable in enhancing the The alldifferent constraint [18] is probably the
declarative encoding of problems and the efficiency of con- best-known global constraint used in constraint program-
straint solvers (e.g., [16, 18, 5]). In order to be more gaher ming. Its semantics is as follows: X4, ..., X,, are vari-
we assume that the finite domain associated to each variablables with domain®X:, ..., DX~ then
is agenenc.flmte get of lattice points (instead, e.g., ob=& b alldifferent(Xy,..., Xn) = (DX x --- x DXn) \
representation as in [10]). {(a an) € (DX1 x - x DXn .

XGNen n Elcomam varlablelez...,Xn, with domglns 3i,j. 1<i<j<n A a=a;)}
D+, ..., D*», aglobal constraintC on X,..., X, isa
relationC C DX x ... x DX~ For each global constraint It is well-known that testing th€€ON and GAC proper-
C, we are interested in Verifying two properties [6] ties and performingEACfiltering for thealldifferent
o (CON) Consistencyc # constraint can be done in polynomial time. These prob-

o (GAC) Generalized Arc Consistencyl < i < n and Iems_can_ be solved, for (_example,_by adapting algonthms
X, . X X, for bipartite graph matching (as discussed, e.g., in [16]).
Ya; € D%i: da; € D+t ---Ja;—1 € D™ 13ai+1 S . . . .
DX+ 3a, € DXr : (4 an) € C The alldifferent constraint has a significant role in
" ' " the modeling of the PSD problem on discrete lattices, to ex-
press the fact that a point in the lattice cannot be used to
accommodate two distinct amino acids.

If the constraintC' is binary, i.e., it involves only two vari-
ablesX, X, then the GAC notion is known &sc consis-
tency (AC)

The notion of GAC is commonly associated to the no-
tion of filtering, i.e., the problem of removing values from

the domains of variables in order to obtain an equivalent Thecontiguous  global constraint is used to describe
constraint which satisfies tH@AC property. Often, the fil-  {he factthat a list of variables represent lattice poirds #ne

tering problem is computationally expensive, and approxi- agjacent, in terms of positions in the lattice graph. Edie
mated solutions can be considered, leading to an equivalen{ne set of edges in a lattice, and Jét, . . ., X,, be a list of

constraintC”, not necessarily meeting the GAC condition.  yariaples (with domain®~, ..., DX, respectively). The
Observe that, under the aSSUmption that the domains ar%ontiguous constraint can be defined as follows:

not empty, the definition oGAC implies CON Thus, if

we prove that establishinGAC is polynomial, the same

3.2. The contiguous Constraint

contiguous(Xi,..., X,) = (DXt x .- x DXn) \

will hold for CON If CON is NP-complete, then NP- {(a,...,an) € (DFr - DFr)

hardness will be inherited bBAC. Additionally, if we Fi (L<i<n A (0, 0i41) ¢ E)}

assume an explicit representation of the domains, thenTesting theGAC of contiguous  can be done in polyno-

the NP-completeness @ON will actually imply the NP- mial time. In fact, thecontiguous  constraint is equiva-

completeness d6AC lent to the conjunction of the — 1 binary constraints of the
In the rest of the paper, we discuss different types of form C; ; 41, withi € {1,...,n — 1}, such that

global constraints. We start with simple and general global , ,

constraints (such aalldifferent ), and move towards Cii1 = (DX x DXi) \ {(ai, aisa) :

. . . . . Xi ) Xit1 .
constraints more closely tied to the properties of discrete @ € DT A a1 €D A (@i i) & B}

lattices and the needs of the PSD problem. The typical The overall constraint graph induced by these binary con-
problems encoded on discrete lattices deal with finding ad-straints is acyclic—and under these conditi&implies
equate placements of objects in the lattice space. PlaceGAC[11]. SinceAC for binary constraints can be tested
ments require the entity to occupy contiguous locations in in polynomial time, the same holds f&AC. Polynomiality

the lattice €ontiguous  constraint, Sect. 3.2), two parts of CON follows easily. GAC filtering is equivalent to AC

of the same entity cannot be in the same locatisewm( filtering, which is also polynomial.

constraint, Sect. 3.3), and components of the entity mustThe contiguous  constraint is useful when modeling
maintain a minimum distance to account for the size of PSD problems, as it allows us to state that the sequence of
the entity @lldistant constraint, Sect. 3.4). Combi- amino acids composing the primary sequence of a protein
nations of these conditions lead to more specialized globalshould remain contiguous in the discrete lattice.



3.3. The saw Constraint

| |

o %l

The saw constraint requires that each assignment to

the variablesXy, ..., X,, represents &elf-avoiding walk
(SAW)in the lattice. More formally, the constraint can be Dy = {0}
defined as follows: Dy =---= Do D, D,

(all points)
saw(X1,...,Xp) = contiguous(Xy,..., X,) N
alldifferent(Xy,...,X,)

Thesaw constraint can be used, for example, to model the
fact that the primary sequence of a protein cannot create Dy Ds
cycles when placed in the 3D space. A similar constraint
(calledSAWalk has been used in [2].
saw can be replaced by a number of binary constraints, b b
7 8

and performingAC filtering on them can be employed as

898

a first rough polynomial approximation @AC filtering. o

A second polynomial filtering can be achieved by iterating %E‘E
the GACfiltering of alldifferent andcontiguous ~
However, these represent weaker propagation filterings tha Dy Do

a directsaw GAC filtering. Figure 2 compares the three . ]
types of filtering on a small example (in a 2D version of ~ Figure 2. Propagation based on AC
the cubic lattice). The domains are shown to the left of (&l points), iterated alldifferent ot
the arrow (O, contains a single point, whil®,, ..., Do continuous GAC (dark grey and white),
include 10 points). On the right, the figure shows the and saw GAC(dark grey).
results of the different forms of filtering—wher@) all
the circles (of any color) represent points left in the do-
main by AC filtering; (b) light grey (yellow) circles are
points that are removed by the iterat&dC filtering of
alldifferent +contiguous ; (c) the white circles are
the additional points removed ByAC filtering of thesaw
constraint. The size of all domains (initially equaldb) is
reduced t88, 19, and17 in the different approaches.
Testing theCON property forsaw is clearly in NP. We
have proved that it is NP-complete by reduction of the NP-
complete Hamiltonian Cycle (HC) problem on a particular
class of planar graphs, callegecial planar graphn [8].
We omit here the details of the proofs due to space lifits.

Dy =Dy =Ds AC GAC

Figure 3. AC and GAC propagation on
alldistant(X;, X0, X3,2,2,2)

n numbersiy, . .., d,—representing minimal distances de-
3.4. The alldistant Constraint rived from the “size” of each object—we are looking for a
solutionX; = p4,..., X, = p, such that, for each pair

When we model biologically motivated problems (e.g., 1 < %J < n, we have thap; andp; are located at distance
protein structure determination) on a discrete lattice, we at 1€asid; + d;. More formally:
often observe that thalldifferent constraint is not alldistant(X1, ..., Xn,d1,...,dn) =
sufficiently expressive. As a matter of fact, we usually (DX1 x...x DXn) \ {(a1,...,an) € DX1 x --. x DXn .
require that values assigned to a group of variables are 3 < i <j < nsqeucl(ai, aj) < (di +d;j)?}

sufficiently spread in the lattice, ensuring a minimal dis- Note that if we consider thalldistant with d; =
tance between each assigned pair of points. Thisisre-1 ;7 _ L then we achieve the same effect as

quired, e.g., to address the fact that different amino acids)giferent . Fig. 3 shows a simple example of ap-
of a protein havg different volume occupancies in the 3D plication of GAC for alldistant _ Let the domains of
space. In thalldistant constraint, giver vgrlables all the three variables be the set of grey points in the left-
X1,..., Xy, with respective domain®**, ..., D", and most picture. In the center picture, the light grey pointtis a
1Details can be found aww.dimi.uniud.it/dovier/WCBO06/ distance less thaz + 2 from all Ot_her point_s, and it is re-
WCBO06_proceedings.pdf . pp. 59-64. moved by AC. For every other point, there is always a point




at distance greater than 4 (the point at the opposite corner)
Finally, consider the rightmost picture. If the white point
is selected foiDq, only the black point is available is.

No point remains forD3. Thus, the white point must be
removed. The same will happen for the other points, and
GAC filtering detects unsatisfiability.

It is possible to reduce the BIN-Packing problem to
the consistency problem for tredldistant constraint,
thus proving its NP-completeness (observe that the NP-
membership trivially holds). We skip the proof due to space
limits. The problem of fast approximated filtering is open
and could be investigated, e.g., by adaptingsveep algo-
rithmsof [4].

3.5. The chain Constraint
This global constraint states thatvariables represent

a self-avoiding walk and, moreover, a certain distance be-
tween variables must be respected.

define arotation of a lattice pointp = (p.,py.p.) as
TOt(ng, 97 170)(1)) =X-Y -Z 'pT, where
10 0
X = 0 cos¢ sing
| 0 —sing cos¢
[ cos® 0 sinf
Y = 0 10
| —sinfd 0 cosf
[ cosv siny 0
Z = —sinty costy 0
| 0 0 1

Although the rotation angleg, 0, are real valued, only
few combinations of them define automorphisms on the lat-
tice in use. The total numbers of distinct automorphisms
depends on the lattice—e.g., in the cubic lattice, we have

In addition, variablesthatr = 16, and inFCCwe haver = 24. We extend the

representing consecutive amino acids are required to bedefinition of rotation to the case of lists of lattice points,

placed at distance equal to This last property repre-
sents the main difference withldistant . More for-
mally, givenn variablesXy, ..., X,,, with respective do-
mainsDXt, ..., DX», andn numbersiy, ..., d,:

chain(Xl,...,Xn,ch...,cn):(DX1 X oo X DX") \
({(a1,...,an) € (DX1 x .- x DXn) : 34 4.
1<i4+1<j<n A sqeucl(ai,a;) < (d; +dj)2})
U{(a1,...,an) € (DX1 x ... x DXn) : 3,
1<i<n A (ai,ai+1)¢E})

Note that if we consider thehain with d; = 2,... ydp =
1 then we achieve the same effectsasv. Being therefore
a generalization afaw, CON is NP-complete anGACis
NP-hard forchain .
3.6. The rigid block Constraint

It is common, when dealing with protein structure de-
termination, to have knowledge of local features of the
structure, e.g., presence of secondary structure comgonen
(such asxy-helices and3-strands); thus, we want to express
the fact that a collection of points have to be located in the
discrete lattice according to a predefined pattern.

This notion can be represented using another type of
global constraint, calledigid block constraint A rigid
block defines a layout of points in the space that has to
be respected by all admissible solutions. Dét ..., X,
be a list of variables, having domaifs*:, ..., DX~ Let
us also consideZ = B4,...,B, to be a list of lattice
points—that, intuitively, describe the desired layout loé t
rigid block. Then,block(X7,.. .,Xn,é) is an-ary con-

straint, whose solutions are assignments of lattice pointsi

to the variablesX,,...,X,, that can be obtained from
B modulotranslationsandrotations More precisely, we

rot(¢,0,1)(B), whereB is a list of points and the result
is a list in which every element df is rotated according to
the previous definition.

Given a list of pointsé,
platesas the set:

Templ(B) = {rot(¢, 6,1)(B)

we define the concept ¢ém-

: 36,0,¢. rot(é,0,¢)(B)

is an automorphism on the lattige
which contains the distinct 3-dimensional rotations of the
pointsé in the lattice. Note that, for a given list of points
(B), the cardinality ofTempl(B) is at most-. We say that
7 = (¢s, 0y, L) is alattice vectorif the translation by[
of lattice points generates an automorphism on the lattice.
Note that, for some asymmetric lattices, it is possible that
lattice vectors do not exist.

Let/ be a lattice vector; WitIShift[Z] we denote a map-
ping that translates a rigid block according to the veétor
Formally, for eachl < i < k, we haveShift[¢|(B)]i]
B; + (. Shift is used to place a template into the lattice
space, preserving the orientation and the distances betwee

points. A rigid block constrainblock(X7y, ... ,Xn,é) is
then defined as the set:
{(a1,...,an) €Dy X ...x D, : 37 3P.
P € Templ(B) A Shift[f](P) = (ai,...,an)}

With a fixed rotation of the blockCON is linear in
the size of the smallest variable domain (a simple intersec-
tion of possible translations for each domain has to be per-
formed).GACis polynomial as well, since it is sufficient to
repeat theCON test for each domain.

Propagation of this kind of constraints has been studied
in a wider context in [13]. Moreover, the idea of consider-
ing rigid blocks to model substructures of proteins is also
discussed in [3].



3.7. The density Constraint 4. Tool and Experiments

Electron cryo-microscopis an experimental technique We implemented the global constraints presented above
that has the potential to allow structure determination for in our systemCOLA 3.0[10, 7]. The system seamlessly
large and membrane proteins [19, 15]. An electron micro- integrates the new global constraints into the previous con
scope is able to producedansity mapD that represents the  straint system, thanks to the compositionality of constrai
electron density of a molecule in a given portion of space; programming techniques. In particular, we now provide the
these maps usually provide a resolution ranging fi®n possibility to model a protein chain structural properties
to 12A. The density map is sampled at a uniform r&te  ing specific constraints and to superimpose on the structure
in the 3D space, and generates a partition of the space intcknown patterns taken from the Protein Data Bank. More-
cubes with edges of lengtR. Each cube contains a certain over, multiple chain definitions are supported.
amount of density, described by a real number, representing We briefly describe the concrete syntax of the new con-
a sample measurement. Let us indicate withx, y, z) the straints (for more information, c.f. [7]).
value of the density map sampled at locatieny, z) € N°. o cstore _add_next(v 1, v ) indicates that amino

Each molecule component (e.g., amino acid) placedina  acidsy, andw, are at one unit lattice distance. Used
pointp” in the space generates a density value that affects 15 model two amino acids that are contiguous in the
p and the neighboring points according to a given func- primary sequence;
tion F—for instanceF can be approximated by@aussian

- o cstore _add_ang(v ;) indicates that the amino acid
contribution:

v; cannot form al80° bend angle with amino acids

2 vi—1 andv;yq;

_ =7 .
F(Z,D) = Go0(Z, D) = ae 202 o cstore _add_ssbond(v i, v 3) states that amino
- 5 ) ) ) acidsv; andwv, are close and form a disulfide bridge;
wherea € R, € N° o € R are respectively the intensity o cstore _add _alldifferent(v WV ) states

of the map, the reference point for the center of the object,
and the decay control parameter. The parametexrsd o

can be estimated according to the type of the component,
by first generating density maps for the single components
and then performing a least square approximation.

Given a molecule chemical description, it is possible to
decompose the molecule intocomponents (e.g., a protein
can be decomposed into the set of composing amino acids).
Each component < ¢ < n can be placed in the space in
the positiorp; and provides a specific contribution function : , > :
Fi(&, ;) which can be pre-computed. pair v; anq vepy fori < t. < 7, in order to avoid

The ultimate goal is to find the possible placements conflicts withnext constraint;

[F1, ..., F.] of the components so that their combination ~ © cstore .add.chain(v i, v o) states that the

that amino acids from; to v; cannot overlap;

o cstore _add_contiguous(v ; v ;) states that
the amino acids from; to v; are connected and con-
tiguous in space;

o cstore _add_saw(v ;, v ;) states that amino acids
fromv; to v; form a self avoiding walk;

o cstore _add alldistant(v i Vj, d)  states
that amino acids from; to v; cannot lie at distance
smaller than/d. The constraint is not applied to each

produces a density map “similar’ th—e.g., for each amino acids_in the range_from to v; satisfy b_oth the
FeN3, Y1 Fi(#,7h) ~ D(&). saw constraint and thalldistant constraint.

We have identified some global constraints (e.g., Finally, therigid block constraintis defined by means of
average _density , point _density , ...) that ab-  the protein description file, which provides the PDB pattern
stract this concept and proved the NP-completeness of theiand the range of primary sequence of application.
consistency check, even when using a very sinfpleinc- Our goal is to tackle proteins that are hundreds of amino

tion. We obtained some preliminary results on the integra- acids long. The global constraints offer the computational
tion of this constraint with the other global constraints-di  tools to model and compute the conformations of such pro-
cussed in this paper—in particulsaw andchain . The teins in reasonable time. The knowledge of some pro-
density constraint allows us to effectively prune the dearc tein domains can be included in the prediction to restrict
space, and it becomes useful when using a high resolutiorthe search. We model the protein structure exploiting the
lattice (FCCwith 3.84 between neighbors contains very few approximation of theFCC lattice. However, when deal-
placements for consecutive amino acids); however, the useng with rigid blocks, we superimpose the original non-
of a highly connected lattices hampers the propagation ofapproximated block when generating the energy evaluations
other constraints (e.gsaw). The plan is to integrate prop- and the prediction output, to provide a higher quality and re
agation algorithms in order to retain the benefits of density duce approximation errors.

information in a more refined context. In our preliminary tests, we make use of a potential en-



ergy model suitable for globular protein, which caused less [4] N. Beldiceanu and M. Carlsson. Sweep as a Generic
reliability in the quality of multi-domain proteins. On the Pruning Technique Applied to the Non-overlapping
other hand, COLA is completely parametric w.r.t. the en- Rectangles Constrain€CP, Springer Verlag, 2001.

ergy function used to evaluate the conformational space. . .

The use of different energy functions does not significantly [°] N. Beldiceanu et al. Global Constraint Catalog
affect the efficiency of search. Thus, we expect that tighter TR2005-08, SICS, 2005.

interaction with structural biologists can provide COLA 6]

! i > : C. Bessiere et al. The complexity of global constraints.
with better energetic models and higher quality results.

Proceedings AAAI'04, pp. 112-117, 2004.

5. Conclusions and future work [7] Constraint Solver for Lattices (COLA)www?2.
' unipr.it/  ~dalpalu/COLA/

In this paper, we presented a study of different global [8] P. Crescenzi et al. On the Complexity of Protein Fold-
constraints that can be used to provide declarative encod- ing. J. of Computational Biolog§(3):423-466, 1998.
ings of problems in discrete crystal lattices. The intreduc
tion of global constraints has been motivated by problems [9] A. Dal Pall, A. Dovier, and F. Fogolari. Constraint
derived from the use of constraint solving in discretedati logic programming approach to protein structure pre-
to solve the PSD problem. We propose different types of diction. BMC Bioinformatics5(186), 2004.
constraints and investigate their computational properti [

Various aspects are still open and deserve consideration.
The computational considerations indicate B&N, GAC,
and filtering for a number of interesting global constraints
are intractable properties. In these cases, it will be impor [11] E. Freuder. A sufficient condition for backtrack-
tant to determine whether good approximated filtering al- bounded searchl. of ACM29(1):24-32, 1982.
gorithms can be devised and efficiently implemented. We _ ) o
also intend to extend our investigation of the rigid block [12] W. Hart and S. Israil. = Fast protein folding in the
constraint, allowing the expression of relationship betwe hydrophobic-hytrophilic model within three-eighths
blocks (e.g., proximity, angles), starting from the ideees-p of optimal. J. Comp. Biolog\3(1):53-96, 1996.
sented in [13, 14].

The global constraints contained in this paper have been
implemented in different prototypes. The original imple-
mentation has been realized using constraint logic program [14] L. Krippahl and P. Barahona. Applying Constraint

10] A. Dal Palu et al. A New Constraint Solver for 3-
D Lattices and its Application to the Protein Folding
Problem.LPAR Springer Verlag, 2005.

[13] L. Krippahl and P. Barahona. Propagating N-Ary
Rigid-Body ConstraintsCP, Springer Verlag, 2003.

ming, and employed to compare the pruning capabilities Programming to Rigid Body Protein DockingCP,

of the different constraints. More recently, as descrilved i Springer Verlag, 2005.

this paper, we have included these global constraints in the o .

COLA system. [15] E.J. Manc_ml etal. Cry_o—e!ectron Microscopy Rev_eals
We hope this paper will inspire further interest in this the Functional Organization of an Enveloped Virus.

problem and promote discussion about suitable global con- Mol. Cell 5:255266, 2000.

straints for discrete lattice structures and efficient enpl

. ) [16] J.-C. Regin. A filtering algorithm for constraints of
mentation techniques.

difference in CSPSR.R. LIRMM 93-068, 1993.
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