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Abstract

This paper investigates alternativeglobal constraints
that can be introduced in a constraint solver over discrete
crystal lattices. The objective is to enhance the efficiencyof
lattice solvers in dealing with the construction of approxi-
mate solutions of the protein structure determination prob-
lem. The paper discusses various alternatives and provides
preliminary results concerning the computational proper-
ties of the different global constraints.

1. Introduction

Discrete (crystal) latticesare formal and discrete mod-
els of the space [17]. They have been frequently adopted to
provide formal descriptions of crystal structures of chemi-
cal compounds, and they have provided valuable insights in
the study of approximated 3D conformations of molecular
structures. A field of application is the approximations of
foldings of protein structures in the 3D space [17, 2, 1, 12].
In this context, polymers are laid out in regularly organized
subsets ofN3. These subsets are described concisely by the
vectors that specify the neighbors of each point.

The protein structure determination problem in the con-
text of discrete lattice structures has been studied as aCon-
straint Optimization Problemin the Face Centered Cubic
(FCC) lattice—using a simplified pairwise energy model
in [2] and a more precise energy model in [9]. In these
approaches, the position of each amino acid is described
by a triplet of finite domain (FD) variables(Px, Py, Pz),
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where each variable describes one coordinate of the point
in the 3D space. Propagation algorithms operate on points
by means of projection of domain information on individual
axis. Unfortunately, experimental studies have shown that
applying constraints separately to the individual coordinates
significantly limits the power ofpropagationamong points
asindividual objects, rather than as triples of FD variables.
This limits the effective propagation of domain changes per-
formed along one axis to the other dimensions of the space.
To address this problem, researchers have developed ad-hoc
constraint solvers (e.g., [10]), whose underlying primitive
domain views lattice points asatomic values.

In this paper we investigate the problem of introduc-
ing global constraintsin the general context of constraint
solving on discrete lattices. Global constraints allow the
programmer to express knowledge about complex relation-
ships between variables, that can be effectively employed
by the search algorithm to prune infeasible parts of the solu-
tion search space. We introduce different global constraints,
structured according to the specific properties of finite lat-
tices, and motivated by the approximated protein structure
determination problem.

Some specialized types of global constraints in lattice
spaces have already been considered in [10, 2], while some
global constraints in thereal 3D space (R3) have been used
in [13, 14]. Nevertheless, the literature does not provide
a comprehensive study of discrete lattice global constraints
relevant to the protein structure determination problem. In
this paper we identify some relevant global constraints and
analyze their computational properties, with respect to both
the satisfiability problem and the propagation process. The
study is also completed by some preliminary pragmatic con-
siderations concerning the implementation of global con-
straints in the context of an actual lattice constraint solver.



The main contribution of this paper is the identification
and computational characterization ofwhich global con-
straints should be introduced in a discrete lattice constraint
solver, to enhance its declarativeness and facilitate the effi-
cient resolution of the protein structure determination prob-
lem. We expect our design to be applicable to any constraint
solver on discrete lattices (e.g., [2, 10]), as well as to other
systems that use constraint-based technology to address the
protein structure determination problem.

(a) (b) (c)

Figure 1. Components of a Cubic, FCC, and
Chess Knight Lattice

2. Crystal Lattices and the Protein Structure
Problem

Let us start by reviewing the formal definitions of dis-
crete crystal lattices and their use in the protein structure
determination problem.

A discrete crystal lattice(or, simply, alattice) is a graph
(P,E), whereP is a set of triples(x, y, z) ∈ N

3, connected
by undirected edges (E). GivenA = (x, y, z) ∈ P , we
will denotex, y, z with Ax, Ay , Az, respectively. Lattices
contain strong symmetries and regular patterns repeated in
the space. If all the nodes have the same degreeδ, then the
lattice is said to beδ-connected. Let us introduce the follow-
ing preliminary definitions. Thesquare Euclidean distance
(sqeucl)between two 3D points is

sqeucl(A, B) = (Bx − Ax)2 + (By − Ay)2 + (Bz − Az)
2

while thenorm infinity distance (norm∞) is
norm∞(A,B) = max{|Bx − Ax|, |By − Ay|, |Bz − Az|}.

Three examples of lattices are described next.
A cubic lattice(P,E) (Fig. 1(a)) is defined as

P = {(x, y, z) | x, y, z ∈ N}
E = {(A,B) | A,B ∈ P, sqeucl(A,B) = 1}.

The cubic lattice is 6-connected.
A FCClattice(P,E) is characterized by
P = {(x, y, z) | x, y, z ∈ N ∧ x+ y + z is even}
E = {(A,B) | A,B ∈ P, sqeucl(A,B) = 2}.

The FCC lattice is organized in cubes, each side having
length2, and where the center point of each face is also
admitted. TheFCClattice is 12-connected—see Fig. 1(b).
A chess knight(Fig. 1(c)) lattice is characterized by

P = {(x, y, z) | x, y, z ∈ N}
E = {(A,B) | A,B ∈ P, sqeucl(A,B) = 5}.

Each edge allows a move like a knight on a chess-board,
i.e., 2 units in one direction, 1 in another direction, 0 in the
third direction. The chess knight lattice is 24-connected.

The lattice can be used as the underlying structure for a
constraint domain; let us consider the approach explored in
COLA[10]. In COLA, adomainD is described by a pair of
lattice points〈low(D), up(D)〉. The domainD defines a set
of lattice points in the 3Dbox: {A ∈ P : low(D)x ≤ Ax ≤
up(D)x, low(D)y ≤ Ay ≤ up(D)y, low(D)z ≤ Az ≤
up(D)z}. Each variableV represents an amino acid to be
placed in a point in the lattice space, and it is associated to
a domainDV = 〈low(DV ), up(DV )〉. Various primitive
constraints have been provided, such as:

DIST LEQ(V1, V2, d) ⇔
∃P1 ∈ B1, ∃P2 ∈ B2 s.t.norm∞(P1, P2) ≤ d

EUCLLEQ(V1, V2, d) ⇔
∃P1 ∈ B1, ∃P2 ∈ B2 s.t.sqeucl(P1, P2) ≤ d

(V1, V2 are variables andB1, B2 are their boxes).
These lattice structures and constraints have been used

to model the protein structure determination problem. Let
us illustrate, for example, the basic encoding of this prob-
lem in theFCC lattice. LetS = s1 . . . sk be the primary
sequence of a protein. We wish to determine a placement of
the amino acids in the lattice; the position of the amino acid
si is represented by a constraint variableVi. The modeling
leads to the following constraints:

◦ For each 1 ≤ i ≤ k − 1, we have that
EUCLLEQ(Vi, Vi+1, 2) and EUCLGEQ(Vi, Vi+1, 2):
adjacent amino acids in the primary sequence are
mapped to lattice points connected by one lattice unit;

◦ For each 2 ≤ i ≤ k − 1, we have that
EUCLLEQ(Vi−1, Vi+1, 7): three adjacent amino acids
may not form an angle of180◦ in the lattice;

◦ For each1 ≤ i, j ≤ k and |i − j| ≥ 2, we have that
EUCLGEQ(Vi, Vj , 4): two non-consecutive amino acids
must be separated by more than one lattice unit, and60◦

angles are disallowed for three consecutive amino acids;
◦ For each knownssbond present between amino acidssi

andsj, we have thatDIST LEQ(Vi, Vj , 4).

The energy of the protein is assumed to be given by the
sum of the energies generated by all pairs of amino acids,
and it will depend on their distances and their types. In
particular, we employ the functioncontact to state that
two amino acidssi andsj are sufficiently close to interact,
and thus they contribute to the energy function. In theFCC
we state thatcontact(A,B) = 1 iff EUCLLEQ(A,B, 4).
Theprotein structure determination problem (PSD)can be
modeled as the problem of finding an assignment satisfying
all these constraints and which minimizes the energy cost
function:

E(S) =
∑

1≤i<k

∑

i+2≤j≤k

contact(Vi, Vj) · Pot(si, sj)



wherePot denotes the energy contribution of two amino
acids in contact (see e.g. [9]).

3. Global constraints

A global constraint is a relation betweenn variables.
Global constraints are very valuable in enhancing the
declarative encoding of problems and the efficiency of con-
straint solvers (e.g., [16, 18, 5]). In order to be more general,
we assume that the finite domain associated to each variable
is a generic finite set of lattice points (instead, e.g., of a box
representation as in [10]).

Given n domain variablesX1, . . . , Xn, with domains
DX1 , . . ., DXn , a global constraintC onX1, . . . , Xn is a
relationC ⊆ DX1 × · · · ×DXn . For each global constraint
C, we are interested in verifying two properties [6]:
◦ (CON) Consistency:C 6= ∅
◦ (GAC) Generalized Arc Consistency:∀1 ≤ i ≤ n and
∀ai ∈ DXi : ∃a1 ∈ DX1 · · · ∃ai−1 ∈ DXi−1∃ai+1 ∈
DXi+1 · · · ∃an ∈ DXn : (a1, . . . , an) ∈ C

If the constraintC is binary, i.e., it involves only two vari-
ablesX1, X2, then the GAC notion is known asarc consis-
tency (AC).

The notion ofGAC is commonly associated to the no-
tion of filtering, i.e., the problem of removing values from
the domains of variables in order to obtain an equivalent
constraint which satisfies theGAC property. Often, the fil-
tering problem is computationally expensive, and approxi-
mated solutions can be considered, leading to an equivalent
constraintC′, not necessarily meeting the GAC condition.

Observe that, under the assumption that the domains are
not empty, the definition ofGAC implies CON. Thus, if
we prove that establishingGAC is polynomial, the same
will hold for CON. If CON is NP-complete, then NP-
hardness will be inherited byGAC. Additionally, if we
assume an explicit representation of the domains, then
the NP-completeness ofCON will actually imply the NP-
completeness ofGAC.

In the rest of the paper, we discuss different types of
global constraints. We start with simple and general global
constraints (such asalldifferent ), and move towards
constraints more closely tied to the properties of discrete
lattices and the needs of the PSD problem. The typical
problems encoded on discrete lattices deal with finding ad-
equate placements of objects in the lattice space. Place-
ments require the entity to occupy contiguous locations in
the lattice (contiguous constraint, Sect. 3.2), two parts
of the same entity cannot be in the same location (saw
constraint, Sect. 3.3), and components of the entity must
maintain a minimum distance to account for the size of
the entity (alldistant constraint, Sect. 3.4). Combi-
nations of these conditions lead to more specialized global

constraints (chain constraint, Sect. 3.5, andblock con-
straint, Sect. 3.6). We also discuss the constraintdensity
suggested by protein density map information determined
via electron cryo-microscopy (Sect. 3.7).

3.1. The alldifferent Constraint

The alldifferent constraint [18] is probably the
best-known global constraint used in constraint program-
ming. Its semantics is as follows: ifX1, . . . , Xn are vari-
ables with domainsDX1 , . . . , DXn , then

alldifferent(X1, . . . , Xn) = (DX1 × · · · ×DXn) \
{(a1, . . . , an) ∈ (DX1 × · · · ×DXn :

∃i, j. (1 ≤ i < j ≤ n ∧ ai = aj)}
It is well-known that testing theCON and GAC proper-
ties and performingGACfiltering for thealldifferent
constraint can be done in polynomial time. These prob-
lems can be solved, for example, by adapting algorithms
for bipartite graph matching (as discussed, e.g., in [16]).
The alldifferent constraint has a significant role in
the modeling of the PSD problem on discrete lattices, to ex-
press the fact that a point in the lattice cannot be used to
accommodate two distinct amino acids.

3.2. The contiguous Constraint

Thecontiguous global constraint is used to describe
the fact that a list of variables represent lattice points that are
adjacent, in terms of positions in the lattice graph. LetE be
the set of edges in a lattice, and letX1, . . . , Xn be a list of
variables (with domainsDX1 , . . . , DXn , respectively). The
contiguous constraint can be defined as follows:

contiguous(X1, . . . , Xn) = (DX1 × · · · ×DXn) \
{(a1, . . . , an) ∈ (DX1 × · · · ×DXn) :

∃ i. (1 ≤ i < n ∧ (ai, ai+1) /∈ E)}
Testing theGACof contiguous can be done in polyno-
mial time. In fact, thecontiguous constraint is equiva-
lent to the conjunction of then− 1 binary constraints of the
formCi,i+1, with i ∈ {1, . . . , n− 1}, such that

Ci,i+1 = (DXi ×DXi+1) \ {(ai, ai+1) :
ai ∈ DXi ∧ ai+1 ∈ DXi+1 ∧ (ai, ai+1) /∈ E}

The overall constraint graph induced by these binary con-
straints is acyclic—and under these conditionsAC implies
GAC [11]. SinceAC for binary constraints can be tested
in polynomial time, the same holds forGAC. Polynomiality
of CON follows easily. GAC filtering is equivalent to AC
filtering, which is also polynomial.
The contiguous constraint is useful when modeling
PSD problems, as it allows us to state that the sequence of
amino acids composing the primary sequence of a protein
should remain contiguous in the discrete lattice.



3.3. The saw Constraint

The saw constraint requires that each assignment to
the variablesX1, . . . , Xn represents aself-avoiding walk
(SAW)in the lattice. More formally, the constraint can be
defined as follows:

saw(X1, . . . , Xn) = contiguous(X1, . . . , Xn) ∩
alldifferent(X1, . . . , Xn)

Thesaw constraint can be used, for example, to model the
fact that the primary sequence of a protein cannot create
cycles when placed in the 3D space. A similar constraint
(calledSAWalk) has been used in [2].

saw can be replaced by a number of binary constraints,
and performingAC filtering on them can be employed as
a first rough polynomial approximation ofGAC filtering.
A second polynomial filtering can be achieved by iterating
theGACfiltering of alldifferent andcontiguous .
However, these represent weaker propagation filterings than
a directsaw GAC filtering. Figure 2 compares the three
types of filtering on a small example (in a 2D version of
the cubic lattice). The domains are shown to the left of
the arrow (D1 contains a single point, whileD2, . . . , D10

include 10 points). On the right, the figure shows the
results of the different forms of filtering—where(a) all
the circles (of any color) represent points left in the do-
main by AC filtering; (b) light grey (yellow) circles are
points that are removed by the iteratedGAC filtering of
alldifferent +contiguous ; (c) the white circles are
the additional points removed byGACfiltering of thesaw
constraint. The size of all domains (initially equal to91) is
reduced to38, 19, and17 in the different approaches.

Testing theCON property forsaw is clearly in NP. We
have proved that it is NP-complete by reduction of the NP-
complete Hamiltonian Cycle (HC) problem on a particular
class of planar graphs, calledspecial planar graphsin [8].
We omit here the details of the proofs due to space limits.1

3.4. The alldistant Constraint

When we model biologically motivated problems (e.g.,
protein structure determination) on a discrete lattice, we
often observe that thealldifferent constraint is not
sufficiently expressive. As a matter of fact, we usually
require that values assigned to a group of variables are
sufficiently spread in the lattice, ensuring a minimal dis-
tance between each assigned pair of points. This is re-
quired, e.g., to address the fact that different amino acids
of a protein have different volume occupancies in the 3D
space. In thealldistant constraint, givenn variables
X1, . . . , Xn, with respective domainsDX1 , . . . , DXn , and

1Details can be found atwww.dimi.uniud.it/dovier/WCB06/
WCB06_proceedings.pdf . pp. 59–64.

D1 = {◦}
D2 = · · · = D10

(all points)
D1 D2

D3 D4 D5

D6 D7 D8

D9 D10

Figure 2. Propagation based on AC
(all points), iterated alldifferent +
continuous GAC (dark grey and white),
and saw GAC (dark grey).

D1 = D2 = D3 AC GAC

Figure 3. AC and GAC propagation on
alldistant(X1, X2, X3, 2, 2, 2)

n numbersd1, . . . , dn—representing minimal distances de-
rived from the “size” of each object—we are looking for a
solutionX1 = p1, . . . , Xn = pn such that, for each pair
1 ≤ i, j ≤ n, we have thatpi andpj are located at distance
at leastdi + dj . More formally:

alldistant(X1, . . . ,Xn, d1, . . . , dn) =
(DX1 × · · · ×DXn ) \ {(a1, . . . , an) ∈ DX1 × · · · ×DXn :

∃1 ≤ i < j ≤ n. sqeucl(ai, aj) < (di + dj)
2}

Note that if we consider thealldistant with d1 =
1

2
, . . . , dn = 1

2
then we achieve the same effect as

alldifferent . Fig. 3 shows a simple example of ap-
plication of GAC for alldistant . Let the domains of
all the three variables be the set of grey points in the left-
most picture. In the center picture, the light grey point is at
distance less than2 + 2 from all other points, and it is re-
moved by AC. For every other point, there is always a point



at distance greater than 4 (the point at the opposite corner).
Finally, consider the rightmost picture. If the white point
is selected forD1, only the black point is available inD2.
No point remains forD3. Thus, the white point must be
removed. The same will happen for the other points, and
GAC filtering detects unsatisfiability.

It is possible to reduce the BIN-Packing problem to
the consistency problem for thealldistant constraint,
thus proving its NP-completeness (observe that the NP-
membership trivially holds). We skip the proof due to space
limits. The problem of fast approximated filtering is open
and could be investigated, e.g., by adapting thesweep algo-
rithmsof [4].

3.5. The chain Constraint

This global constraint states thatn variables represent
a self-avoiding walk and, moreover, a certain distance be-
tween variables must be respected. In addition, variables
representing consecutive amino acids are required to be
placed at distance equal to1. This last property repre-
sents the main difference withalldistant . More for-
mally, givenn variablesX1, . . . , Xn, with respective do-
mainsDX1 , . . . , DXn , andn numbersd1, . . . , dn:

chain(X1, . . . , Xn, c1, . . . , cn) = (DX1 × · · · ×DXn) \
( {(a1, . . . , an) ∈ (DX1 × · · · ×DXn ) : ∃i, j.

1 ≤ i+ 1 < j ≤ n ∧ sqeucl(ai, aj) < (di + dj)2})
∪ {(a1, . . . , an) ∈ (DX1 × · · · ×DXn ) : ∃i.

1 ≤ i < n ∧ (ai, ai+1) /∈ E} )

Note that if we consider thechain with d1 = 1

2
, . . . , dn =

1

2
then we achieve the same effect assaw. Being therefore

a generalization ofsaw, CON is NP-complete andGAC is
NP-hard forchain .

3.6. The rigid block Constraint

It is common, when dealing with protein structure de-
termination, to have knowledge of local features of the
structure, e.g., presence of secondary structure components
(such asα-helices andβ-strands); thus, we want to express
the fact that a collection of points have to be located in the
discrete lattice according to a predefined pattern.

This notion can be represented using another type of
global constraint, calledrigid block constraint. A rigid
block defines a layout of points in the space that has to
be respected by all admissible solutions. LetX1, . . . , Xn

be a list of variables, having domainsDX1 , . . . , DXn . Let
us also consider~B = B1, . . . , Bn to be a list of lattice
points—that, intuitively, describe the desired layout of the
rigid block. Then,block(X1, . . . , Xn, ~B) is a n-ary con-
straint, whose solutions are assignments of lattice points
to the variablesX1, . . . , Xn, that can be obtained from
~B modulo translationsand rotations. More precisely, we

define arotation of a lattice pointp = (px, py, pz) as
rot(φ, θ, ψ)(p) = X · Y · Z · pT , where

X =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ





Y =





cos θ 0 sin θ
0 1 0
− sin θ 0 cos θ





Z =





cosψ sinψ 0
− sinψ cosψ 0
0 0 1





Although the rotation anglesφ, θ, ψ are real valued, only
few combinations of them define automorphisms on the lat-
tice in use. The total numbers of distinct automorphismsr
depends on the lattice—e.g., in the cubic lattice, we have
that r = 16, and inFCCwe haver = 24. We extend the
definition of rotation to the case of lists of lattice points,
rot(φ, θ, ψ)( ~B), where ~B is a list of points and the result
is a list in which every element of~B is rotated according to
the previous definition.

Given a list of points~B, we define the concept oftem-
platesas the set:

Templ( ~B) = {rot(φ, θ, ψ)( ~B) : ∃φ, θ, ψ. rot(φ, θ, ψ)( ~B)
is an automorphism on the lattice}

which contains the distinct 3-dimensional rotations of the
points ~B in the lattice. Note that, for a given list of points
( ~B), the cardinality ofTempl( ~B) is at mostr. We say that
~ℓ = (ℓx, ℓy, ℓz) is a lattice vector if the translation by~ℓ
of lattice points generates an automorphism on the lattice.
Note that, for some asymmetric lattices, it is possible that
lattice vectors do not exist.

Let ~ℓ be a lattice vector; withShift[~ℓ] we denote a map-
ping that translates a rigid block according to the vector~ℓ.
Formally, for each1 ≤ i ≤ k, we haveShift[~ℓ]( ~B)[i] =

Bi + ~ℓ. Shift is used to place a template into the lattice
space, preserving the orientation and the distances between
points. A rigid block constraintblock(X1, . . . , Xn, ~B) is
then defined as the set:

{(a1, . . . , an) ∈ D1 × . . .×Dn : ∃~ℓ ∃P.
P ∈ Templ( ~B) ∧ Shift[~ℓ](P ) = (a1, . . . , an)}

With a fixed rotation of the block,CON is linear in
the size of the smallest variable domain (a simple intersec-
tion of possible translations for each domain has to be per-
formed).GAC is polynomial as well, since it is sufficient to
repeat theCON test for each domain.

Propagation of this kind of constraints has been studied
in a wider context in [13]. Moreover, the idea of consider-
ing rigid blocks to model substructures of proteins is also
discussed in [3].



3.7. The density Constraint

Electron cryo-microscopyis an experimental technique
that has the potential to allow structure determination for
large and membrane proteins [19, 15]. An electron micro-
scope is able to produce adensity mapD that represents the
electron density of a molecule in a given portion of space;
these maps usually provide a resolution ranging from6Å
to 12Å. The density map is sampled at a uniform rateR
in the 3D space, and generates a partition of the space into
cubes with edges of lengthR. Each cube contains a certain
amount of density, described by a real number, representing
a sample measurement. Let us indicate withD(x, y, z) the
value of the density map sampled at location(x, y, z) ∈ N

3.
Each molecule component (e.g., amino acid) placed in a

point ~p in the space generates a density value that affects
~p and the neighboring points according to a given func-
tionF—for instanceF can be approximated by aGaussian
contribution:

F(~x, ~p) = Ga,σ(~x, ~p) = ae−
|~x−~p|2

2σ2

wherea ∈ R, ~p ∈ N
3, σ ∈ R are respectively the intensity

of the map, the reference point for the center of the object,
and the decay control parameter. The parametersa andσ
can be estimated according to the type of the component,
by first generating density maps for the single components
and then performing a least square approximation.

Given a molecule chemical description, it is possible to
decompose the molecule inton components (e.g., a protein
can be decomposed into the set of composing amino acids).
Each component1 ≤ i ≤ n can be placed in the space in
the position~pi and provides a specific contribution function
Fi(~x, ~pi) which can be pre-computed.

The ultimate goal is to find the possible placements
[~p1, . . . , ~pn] of the components so that their combination
produces a density map “similar” toD—e.g., for each
~x ∈ N

3,
∑n

i=1
Fi(~x, ~pi) ≈ D(~x).

We have identified some global constraints (e.g.,
average density , point density , . . . ) that ab-
stract this concept and proved the NP-completeness of their
consistency check, even when using a very simpleF func-
tion. We obtained some preliminary results on the integra-
tion of this constraint with the other global constraints dis-
cussed in this paper—in particularsaw andchain . The
density constraint allows us to effectively prune the search
space, and it becomes useful when using a high resolution
lattice (FCCwith 3.8Å between neighbors contains very few
placements for consecutive amino acids); however, the use
of a highly connected lattices hampers the propagation of
other constraints (e.g.,saw). The plan is to integrate prop-
agation algorithms in order to retain the benefits of density
information in a more refined context.

4. Tool and Experiments

We implemented the global constraints presented above
in our systemCOLA 3.0[10, 7]. The system seamlessly
integrates the new global constraints into the previous con-
straint system, thanks to the compositionality of constraint
programming techniques. In particular, we now provide the
possibility to model a protein chain structural propertiesus-
ing specific constraints and to superimpose on the structure
known patterns taken from the Protein Data Bank. More-
over, multiple chain definitions are supported.

We briefly describe the concrete syntax of the new con-
straints (for more information, c.f. [7]).

◦ cstore add next(v 1, v 2) indicates that amino
acidsv1 andv2 are at one unit lattice distance. Used
to model two amino acids that are contiguous in the
primary sequence;

◦ cstore add ang(v i) indicates that the amino acid
vi cannot form a180◦ bend angle with amino acids
vi−1 andvi+1;

◦ cstore add ssbond(v 1, v 2) states that amino
acidsv1 andv2 are close and form a disulfide bridge;

◦ cstore add alldifferent(v i, v j) states
that amino acids fromvi to vj cannot overlap;

◦ cstore add contiguous(v i, v j) states that
the amino acids fromvi to vj are connected and con-
tiguous in space;

◦ cstore add saw(v i, v j) states that amino acids
from vi to vj form a self avoiding walk;

◦ cstore add alldistant(v i, v j , d) states
that amino acids fromvi to vj cannot lie at distance
smaller than

√
d. The constraint is not applied to each

pair vt and vt+1 for i ≤ t < j, in order to avoid
conflicts withnext constraint;

◦ cstore add chain(v 1, v 2) states that the
amino acids in the range fromvi to vj satisfy both the
saw constraint and thealldistant constraint.

Finally, the rigid block constraintis defined by means of
the protein description file, which provides the PDB pattern
and the range of primary sequence of application.

Our goal is to tackle proteins that are hundreds of amino
acids long. The global constraints offer the computational
tools to model and compute the conformations of such pro-
teins in reasonable time. The knowledge of some pro-
tein domains can be included in the prediction to restrict
the search. We model the protein structure exploiting the
approximation of theFCC lattice. However, when deal-
ing with rigid blocks, we superimpose the original non-
approximated block when generating the energy evaluations
and the prediction output, to provide a higher quality and re-
duce approximation errors.

In our preliminary tests, we make use of a potential en-



ergy model suitable for globular protein, which caused less
reliability in the quality of multi-domain proteins. On the
other hand, COLA is completely parametric w.r.t. the en-
ergy function used to evaluate the conformational space.
The use of different energy functions does not significantly
affect the efficiency of search. Thus, we expect that tighter
interaction with structural biologists can provide COLA
with better energetic models and higher quality results.

5. Conclusions and future work

In this paper, we presented a study of different global
constraints that can be used to provide declarative encod-
ings of problems in discrete crystal lattices. The introduc-
tion of global constraints has been motivated by problems
derived from the use of constraint solving in discrete lattices
to solve the PSD problem. We propose different types of
constraints and investigate their computational properties.

Various aspects are still open and deserve consideration.
The computational considerations indicate thatCON, GAC,
and filtering for a number of interesting global constraints
are intractable properties. In these cases, it will be impor-
tant to determine whether good approximated filtering al-
gorithms can be devised and efficiently implemented. We
also intend to extend our investigation of the rigid block
constraint, allowing the expression of relationship between
blocks (e.g., proximity, angles), starting from the ideas pre-
sented in [13, 14].

The global constraints contained in this paper have been
implemented in different prototypes. The original imple-
mentation has been realized using constraint logic program-
ming, and employed to compare the pruning capabilities
of the different constraints. More recently, as described in
this paper, we have included these global constraints in the
COLA system.

We hope this paper will inspire further interest in this
problem and promote discussion about suitable global con-
straints for discrete lattice structures and efficient imple-
mentation techniques.
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