
altre misure di 
centro e 

dispersione



media geometrica
la radice n-esima del 
prodotto degli n dati 

2, 8    ---->
dati G

4, 1, 1/32 ->



applicazioni

poco utilizzata nelle 
scienze sociali

è utile per rappresentare 
la tendenza centrale in 

distribuzioni non 
simmetriche



relazione con la 
media di log(x)

se logM è la media 
aritmetica di log(x)

allora G = antilog(logM)



il logaritmo di x è il numero  
a cui va elevata la base per 
ottenere x: log10(100) = 2 

l’antilogaritmo di log è il 
numero che si ottiene 
elevando la base alla 
potenza log: antilog10(2) 
=10^2 = 100



media armonica
il reciproco della media 

dei reciproci dei dati 

1, 2, 4    
dati

H



applicazioni

poco utilizzata nelle 
scienze sociali

usata in fisica in  
 situazioni in cui occorre 
mediare rapporti o tassi 

di crescita



S                      V 
100 km            200 km/h 
100 km            100 km/h

200 km



S                      V                             T 
100 km            200 km/h             0.5 h 
100 km            100 km/h              1 h

V media sui 200 km = S/T  
                                  = 200/1.5  

              = 133 km/h 

media aritmetica = (200 + 100)/2  
                             = 150 km/h! 

media armonica = 1/[(1/200 + 1/100)/2] 
        = 133 km/h



> d <- read.table("IQ.txt", header = TRUE) 
> ma <- mean(d$Height) 
> mg <- prod(d$Height)^(1/length(d$Height)) 
> mh <- 1/mean(1/d$Height)

> ma 
[1] 68.5375 

> mg 
[1] 68.42843 

> mh 
[1] 68.32095



> mg 
[1] 68.42843 

> 10^mean(log10(d$Height)) 
[1] 68.42843 

> exp(mean(log(d$Height))) 
[1] 68.42843



deviazione mediana 
assoluta

mediana degli scarti non 
segnati dalla media

Median Absolute 
Deviation

mad()



> mad(d$Height) 
[1] 3.33585 

> sd(d$Height) 
[1] 3.943816



statistiche per la 
forma di una 
distribuzione



asimmetria (skewness)



skewness positiva 

skewness negativa 



Student (1927) Biometrika, 19, 160

curtosi



LEPtokurtic

MESOkurtic 

PLATYkurtic
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Long tail points left 
Symmetric Normal 
Tails are balanced 

Skewed Right 
Long tail points right 

 

   
Figure 1.  Sketches showing general position of mean, median, and mode in a population. 

 
 

Next, a textbook might present stylized sample histograms, as in Figure 2. Figures like these 
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��������	������������������
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������������������-�
���
��
�������������
(b) extreme data values in one tail are not unusual in real data; and (c) real samples may not 
resemble any simple histogram prototype. The instructor can discuss causes of asymmetry (e.g., 
why waiting times are exponential, why earthquake magnitudes follow a power law, why home 
prices are skewed to the right) or the effects of outliers and extreme data values (e.g., how a 
	�����������
���	�����	���
���
�������	����
�����������������	�����
�������
����������������
affects the health insurance premiums for a pool of employees). 
 
 

Skewed Left Symmetric Skewed Right 

   
One Mode Bell-Shaped One Mode 

   

   
Two Modes Bimodal Bimodal 

   
Left Tail Extremes Uniform (no mode) Right Tail Extremes 

 

Figure 2.  Illustrative prototype histograms. 
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appearance varies if we alter the bin limits, so any single histogram may not give a definitive 
view of population shape. But students like clear-cut answers. The next question is likely to be: 
 
  ,�����%$�� '������������"������%#$�'��#�����$'����$�������������������$ �#�)�$��$�$���

! !%��$� ���#�#��'�����#�.$�$��"��# �������� ��$�#$�� "�#��'��##�- 
 
�$%���$#�'� �� $����$���#��'��##�#$�$�#$�������(���.#�Descriptive Statistics may ask more specific 
questions. For example: 
 
  ,�)�#��!���#��'��##�#$�$�#$����" ���(�����#�+0.308. So can I say that my sample of 12 

items came from a left-#��'���! !%��$� ��- 
 
  ,����)�#��!��� ������$��#��$���#��!���������	��	��(����#�$���#��!�������������
���)�$�

my skewness statistic is negative +����
��
 '�����$��$����- 
 
 
3.  Skewness Statistics 
 
Since Karl Pearson (1895), statisticians have studied the properties of various statistics of 
skewness, and have discussed their utility and limitations. This research stream covers more than 
a century. For an overview, see Arnold and Groenveld (1995), Groenveld and Meeden (1984), 
and Rayner, Best and Matthews (1995). Empirical studies have examined bias, mean squared 
error, Type I error, and power for samples of various sizes drawn from various populations. A 
recent study by Tabor (2010) ranked 11 different statistics in terms of their power for detecting 
skewness in samples from populations with varying degrees of skewness. MacGillivray (1986) 
� ���%��#�$��$�,*$���"���$�&����! "$����� ��$��������"��$� rderings and measures depends on 
��"�%�#$����#�������$��#�%������)�$��$���)� ���� %��������#�"������#�� #$���! "$��$�*-���
��
notes that describing skewness is really a special case of comparing distributions. This key point 
is perhaps a bit subtle for students. Students (and instructors) merely need to bear in mind that 
we are not testing for symmetry in general. Rather, the (often implicit) null hypothesis must refer 
to a specific symmetric population. Because the most common reference point is the normal 
distribution (especially in an introductory statistics class) we will limit our discussion 
accordingly. 
 
Mathematicians discuss skewness in terms of the second and third moments around the mean, 

i.e., 2
2
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1
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� �� . Mathematical statistics textbooks and a few 

software packages (e.g., Stata, Visual Statistics, early versions of Minitab) report the traditional 
Fisher-Pearson coefficient of skewness:  
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������
����
�������������
����this statistic is sometimes referred to as 1�  which is awkward 
because g1 can be negative. Pearson and Hartley (1970) provide tables for g1as a test for 
departure from normality (i.e., testing the sample against one particular symmetric distribution). 
Although well documented and widely referenced in the literature, this formula does not 
correspond to what students will see in most software packages nowadays. Major software 
packages available to educators (e.g., Minitab, Excel, SPSS, SAS) include an adjustment for 
sample size, and provide the adjusted Fisher-Pearson standardized moment coefficient1: 
 

[1b] 
3

1
1( 1)( 2)

n
i

i

x xnG
n n s�

�� �� � 
� � � �
�

. 
 
In large samples, g1 and G1 will be similar. Few students will be aware of this formula because it 
is buried within the help files for the software. The formula for G1 is probably not even in the 
textbook unless the student is studying mathematical statistics. However, this statistic is included 
in E��
����Data Analysis > Descriptive Statistics and is calculated by the Excel function 
=SKEW(Array), so it will be seen by millions of ���	
�����������	
���������������
��
����
��
Wikipedia, they will find a different-looking but equivalent formula: 
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 �� �� �

�

� . 

 
This alternate formulation (1c) has the attraction of showing that the adjustment for sample size 
approaches unity as n increases. Joanes and Gill (1998) compare bias and mean squared error 
(MSE) of different measures of skewness in samples of various sizes from normal and skewed 
populations. G1 is shown to perform well, for example, having small MSE in samples from 
skewed populations.  
 
Unfortunately, none of these formulas is likely to convey very much to a student. An ambitious 
instructor can dissect such formulas to impart grains of understanding to the best students, while 
the rest of the class groans as the discussion turns to second and third moments around the mean. 
The resulting insights are, at best, likely to be short-lived. Yet once students realize that there is a 
formula for skewness and see it in Excel, they will want to know how to interpret it. The 
instructor must decide what to say about a statistic such as G1 without spending more time than 
the topic is worth. A minimalist might say that 
 

� Its sign reflects the direction of skewness. 
� It compares the sample with a normal (symmetric) distribution. 

                                                 
1 Not many years ago, computer packages reported g1without an adjustment for sample size. Although the 
adjustment is now incorporated in software packages, textbooks (with a few exceptions) do not report an adapted 
version of the Pearson-Hartley tables. For that matter, many textbooks show no table of critical values at all. 
Without a table, why even mention the sample skewness statistic? 
!
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(MSE) of different measures of skewness in samples of various sizes from normal and skewed 
populations. G1 is shown to perform well, for example, having small MSE in samples from 
skewed populations.  
 
Unfortunately, none of these formulas is likely to convey very much to a student. An ambitious 
instructor can dissect such formulas to impart grains of understanding to the best students, while 
the rest of the class groans as the discussion turns to second and third moments around the mean. 
The resulting insights are, at best, likely to be short-lived. Yet once students realize that there is a 
formula for skewness and see it in Excel, they will want to know how to interpret it. The 
instructor must decide what to say about a statistic such as G1 without spending more time than 
the topic is worth. A minimalist might say that 
 

� Its sign reflects the direction of skewness. 
� It compares the sample with a normal (symmetric) distribution. 

                                                 
1 Not many years ago, computer packages reported g1without an adjustment for sample size. Although the 
adjustment is now incorporated in software packages, textbooks (with a few exceptions) do not report an adapted 
version of the Pearson-Hartley tables. For that matter, many textbooks show no table of critical values at all. 
Without a table, why even mention the sample skewness statistic? 
!

Journal of Statistics Education, Volume 19, Number 2(2011) 

 7 

������
����
�������������
����this statistic is sometimes referred to as 1�  which is awkward 
because g1 can be negative. Pearson and Hartley (1970) provide tables for g1as a test for 
departure from normality (i.e., testing the sample against one particular symmetric distribution). 
Although well documented and widely referenced in the literature, this formula does not 
correspond to what students will see in most software packages nowadays. Major software 
packages available to educators (e.g., Minitab, Excel, SPSS, SAS) include an adjustment for 
sample size, and provide the adjusted Fisher-Pearson standardized moment coefficient1: 
 

[1b] 
3

1
1( 1)( 2)

n
i

i

x xnG
n n s�

�� �� � 
� � � �
�

. 
 
In large samples, g1 and G1 will be similar. Few students will be aware of this formula because it 
is buried within the help files for the software. The formula for G1 is probably not even in the 
textbook unless the student is studying mathematical statistics. However, this statistic is included 
in E��
����Data Analysis > Descriptive Statistics and is calculated by the Excel function 
=SKEW(Array), so it will be seen by millions of ���	
�����������	
���������������
��
����
��
Wikipedia, they will find a different-looking but equivalent formula: 
 

[1c] 

3

1
1 3

2
2

1

1 ( )
( 1)

2 1 ( )

n

i
i

n

i
i

x xn n nG
n

x x
n

�

�

	 �

 ��

� 
 �� 
 �� � �
 ��� 

 �� �� �

�

� . 

 
This alternate formulation (1c) has the attraction of showing that the adjustment for sample size 
approaches unity as n increases. Joanes and Gill (1998) compare bias and mean squared error 
(MSE) of different measures of skewness in samples of various sizes from normal and skewed 
populations. G1 is shown to perform well, for example, having small MSE in samples from 
skewed populations.  
 
Unfortunately, none of these formulas is likely to convey very much to a student. An ambitious 
instructor can dissect such formulas to impart grains of understanding to the best students, while 
the rest of the class groans as the discussion turns to second and third moments around the mean. 
The resulting insights are, at best, likely to be short-lived. Yet once students realize that there is a 
formula for skewness and see it in Excel, they will want to know how to interpret it. The 
instructor must decide what to say about a statistic such as G1 without spending more time than 
the topic is worth. A minimalist might say that 
 

� Its sign reflects the direction of skewness. 
� It compares the sample with a normal (symmetric) distribution. 

                                                 
1 Not many years ago, computer packages reported g1without an adjustment for sample size. Although the 
adjustment is now incorporated in software packages, textbooks (with a few exceptions) do not report an adapted 
version of the Pearson-Hartley tables. For that matter, many textbooks show no table of critical values at all. 
Without a table, why even mention the sample skewness statistic? 
!

correzione 
per n piccoli



Abstract

This paper discusses common approaches to presenting the topic of 
skewness in the classroom, and explains why students need to know 
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coefficient that compares the mean and median. 
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Abstract 
 
This paper discusses common approaches to presenting the topic of skewness in the classroom, 
and explains why students need to know how to measure it. Two skewness statistics are 
examined: the Fisher-Pearson standardized third moment coefficient, and the Pearson 2 
coefficient that compares the mean and median. The former is reported in statistical software 
packages, while the latter is all but forgotten in textbooks. Given its intuitive appeal, why did 
Pearson 2 disappear? Is it ever useful? Using Monte Carlo simulation, tables of percentiles are 
created for Pearson 2. It is shown that while Pearson 2 has lower power, it matches classroom 
explanations of skewness and can be calculated when summarized data are available. This paper 
suggests reviving the Pearson 2 skewness statistic for the introductory statistics course because it 
compares the mean to the median in a precise way that students can understand. The paper 
reiterates warnings about what any skewness statistic can actually tell us.  
 
1.  Introduction 

 
In an introductory level statistics course, instructors spend the first part of the course teaching 
students three important characteristics used when summarizing a data set: center, variability, 
and shape. The instructor typically begins by introducing visu������������	�������������������
��
data. The concept of center (also location or central tendency) is familiar to most students and 
�
�������������������
���
�������������������������������������	���
����
������
����	��
���
��

This paper suggests reviving the Pearson 3 skewness statistic for 
the introductory statistics course because it compares the mean to 
the median in a precise way that students can understand. The paper 
reiterates warnings about what any skewness statistic can actually 
tell us.
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Figure 1.  Sketches showing general position of mean, median, and mode in a population. 
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(b) extreme data values in one tail are not unusual in real data; and (c) real samples may not 
resemble any simple histogram prototype. The instructor can discuss causes of asymmetry (e.g., 
why waiting times are exponential, why earthquake magnitudes follow a power law, why home 
prices are skewed to the right) or the effects of outliers and extreme data values (e.g., how a 
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affects the health insurance premiums for a pool of employees). 
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Figure 2.  Illustrative prototype histograms. 
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questions. For example: 
 
  ,�)�#��!���#��'��##�#$�$�#$����" ���(�����#�+0.308. So can I say that my sample of 12 

items came from a left-#��'���! !%��$� ��- 
 
  ,����)�#��!��� ������$��#��$���#��!���������	��	��(����#�$���#��!�������������
���)�$�

my skewness statistic is negative +����
��
 '�����$��$����- 
 
 
3.  Skewness Statistics 
 
Since Karl Pearson (1895), statisticians have studied the properties of various statistics of 
skewness, and have discussed their utility and limitations. This research stream covers more than 
a century. For an overview, see Arnold and Groenveld (1995), Groenveld and Meeden (1984), 
and Rayner, Best and Matthews (1995). Empirical studies have examined bias, mean squared 
error, Type I error, and power for samples of various sizes drawn from various populations. A 
recent study by Tabor (2010) ranked 11 different statistics in terms of their power for detecting 
skewness in samples from populations with varying degrees of skewness. MacGillivray (1986) 
� ���%��#�$��$�,*$���"���$�&����! "$����� ��$��������"��$� rderings and measures depends on 
��"�%�#$����#�������$��#�%������)�$��$���)� ���� %��������#�"������#�� #$���! "$��$�*-���
��
notes that describing skewness is really a special case of comparing distributions. This key point 
is perhaps a bit subtle for students. Students (and instructors) merely need to bear in mind that 
we are not testing for symmetry in general. Rather, the (often implicit) null hypothesis must refer 
to a specific symmetric population. Because the most common reference point is the normal 
distribution (especially in an introductory statistics class) we will limit our discussion 
accordingly. 
 
Mathematicians discuss skewness in terms of the second and third moments around the mean, 

i.e., 2
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software packages (e.g., Stata, Visual Statistics, early versions of Minitab) report the traditional 
Fisher-Pearson coefficient of skewness:  
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> df <- read.table("~/Desktop/dati completi.txt", 
header = TRUE) 

> head(df) 

  OvsR Sex HAND        RVF     LIKF    Ts SPAF   Eng compito 
1    O   f     dx -3.9873143 1.500000 190  1.0       1       c 
2    O   f     dx -0.4353741 4.166667 413  5.0       2      cd 
3    R   f     dx  3.6857530 3.500000 491  2.5       1      cd 
4    O   m   dx -1.4842264 5.666667 277  6.0       1       c 
5    R   m   dx -1.3211927 6.000000 480  7.0       2      cd 
6    R   m   dx -0.2262290 4.166667 265  3.0       2       c 

> hist(df$Ts)
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df <- read.table("~/Desktop/dati 
completi.txt", header = TRUE)

m <- mean(df$Ts)
n <- length(df$Ts)
s <- sqrt(sum((df$Ts - m)^2)/n) 
  
num <- sum((df$Ts - m)^3)/n
den <- (sum((df$Ts - m)^2)/n)^1.5
sk <- num/den

num <- sum((df$Ts - m)^4)/n
den <- (sum((df$Ts - m)^2)/n)^2
ku <- num/den



> sk
[1] 0.911130

> ku
[1] 2.884776

> library(moments)

> skewness(df$Ts)
[1] 0.9111309

> kurtosis(df$Ts)
[1] 2.884776



riassumendo
la skewness è 0 se la distribuzione è 
simmetrica, <0 se ha coda sinistra e 
>0 se ha coda a destra

la curtosi è 3 se la distribuzione è 
normale, >3 se è leptocurtica e <3 
se è platicurtica

alcuni programmi calcolano il 
coefficiente di eccesso ku - 3, in tal 
caso la distribuzione normale ha 
curtosi 0 (R non lo fa)



facciamo un po’ di 
esercizio
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standardizzazione



> d <- read.table("~/Desktop/VL.txt", 
header = TRUE) 

> head(d) 
     UN     VL  PR 
1 parma  92  1 
2 parma  94  1 
3 parma  93  1 
4 parma  90  1 
5  roma 109  0 
6 parma 103  1
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standardizzazione

una traslazione 

+ 

un cambio di scala 
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esempio

Fahrenheit --> Celsius 

C = (F - 32) / 1.8 

traslazione
cambio di scala 



> (10 - 32)/1.8 
[1] -12.22222 

> (32 - 32)/1.8 
[1] 0 

> (70 - 32)/1.8 
[1] 21.11111 

> (90 - 32)/1.8 
[1] 32.22222



standardizzazione

traslazione: M --> 0 

+ 

cambio di scala: DS = 1 



> a <- d$VL[d$PR == 0] 
> p <- d$VL[d$PR == 1] 

> zp <- (p - mean(p))/sd(p) 
> za <- (a - mean(a))/sd(a) 

> boxplot(za, zp, names = c("altri", 
"parma"), xlab = "ateneo di provenienza", 
cex.lab = 2, col = "grey", ylab = "z(voto di 
laurea)")
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> tapply(d$VL, d$PR, scale)

scorciatoia



$`0` 
             [,1] 
 [1,]  0.95244689 
 [2,] -1.29819815 
 [3,]  0.05218887 
 [4,]  0.65236088 
 [5,]  1.10248989 
 [6,]  0.65236088 
 [7,]  1.10248989 
 [8,] -1.29819815 
 [9,] -0.84806915 
[10,]  0.05218887 
[11,]  1.10248989 
[12,] -1.59828416 
[13,] -0.69802614 
[14,]  0.35227488 
[15,]  1.10248989 
[16,]  0.65236088 
[17,] -0.39794014 
[18,]  0.05218887 
[19,] -1.29819815 
[20,]  1.10248989 
[21,] -1.44824116 
[22,] -1.14815515 
[23,]  1.10248989 
attr(,"scaled:center") 
[1] 102.6522 
attr(,"scaled:scale") 
[1] 6.664756

$`1` 
             [,1] 
 [1,] -0.95196357 
 [2,] -0.62169049 
 [3,] -0.78682703 
 [4,] -1.28223664 
 [5,]  0.86453834 
 [6,] -1.28223664 
 [7,]  2.02049410 
 [8,]  1.19481141 
 [9,]  0.03885566 
[10,] -0.29141742 
[11,]  0.69940180 
[12,] -0.78682703 
[13,]  0.53426527 
[14,]  0.53426527 
[15,] -1.11710010 
[16,]  0.36912873 
[17,] -0.95196357 
[18,]  1.02967488 
[19,] -0.29141742 
[20,] -1.28223664 
[21,]  0.69940180 
[22,] -1.11710010 
[23,] -1.11710010 

[24,]  1.52508449 
[25,]  0.36912873 
[26,] -0.45655396 
[27,] -0.12628088 
[28,] -0.78682703 
[29,] -0.12628088 
[30,] -0.45655396 
[31,]  2.02049410 
[32,] -0.12628088 
[33,]  0.03885566 
[34,]  2.02049410 
attr(,"scaled:center") 
[1] 97.76471 
attr(,"scaled:scale") 
[1] 6.055595 



trasformazione 
logaritmica



> df <- read.table("~/Desktop/dati completi.txt", 
header = TRUE) 

> head(df) 

  OvsR Sex HAND        RVF     LIKF    Ts SPAF   Eng compito 
1    O   f     dx -3.9873143 1.500000 190  1.0       1       c 
2    O   f     dx -0.4353741 4.166667 413  5.0       2      cd 
3    R   f     dx  3.6857530 3.500000 491  2.5       1      cd 
4    O   m   dx -1.4842264 5.666667 277  6.0       1       c 
5    R   m   dx -1.3211927 6.000000 480  7.0       2      cd 
6    R   m   dx -0.2262290 4.166667 265  3.0       2       c 

> hist(df$Ts)
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> hist(log10(df$Ts))
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> library(moments) 

> skewness(df$Ts) 
[1] 0.9111309 

> skewness(log10(df$Ts)) 
[1] 0.1454733

> kurtosis(df$Ts) 
[1] 2.884776 

> kurtosis(log10(df$Ts)) 
[1] 2.129199



log10(t) e normale
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> qqnorm(log10(df$Ts)) 
> qqline(log10(df$Ts))

plot  
quantile-quantile 

normale
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> mean(df$Ts) 
[1] 418.3663

> mean(log10(df$Ts)) 
[1] 2.567262

> mg <- 10^(mean(log10(df$Ts))) 
> mg 
[1] 369.1999



grafici in R 
(elementi di)



menu

vedi:  

Packages & Data 
Package Manager 
Package Installer 
Data Manager



graphics

funzioni di basso livello 
per gli elementi grafici 

funzioni di alto livello per 
grafici preconfezionati 



tipica maniera di 
procedere

generare i grafici che mi 
servono con funzioni di alto 
livello 

“annotare” usando ulteriori 
funzioni di basso livello 
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esempio
> x <- runif(100, 0, 100) 

> plot(x)
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> x <- runif(100, 0, 100)

> abline(h = 50)

> plot(x)
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ciao mondo

esempio

> plot(x) 
> abline(h = 50) 
> text(60, 60,     
"ciao mondo", 
col = "red",  
cex = 2) 



farsi un’idea

> demo(graphics)



d <- read.table("~/Desktop/LT.txt", header = TRUE)
op <- par(mfrow = c(2, 2))
hist(d$LT, prob = TRUE, main = "hist()", xlab = 
"LT", col = "orange")
lines(density(d$LT, col = "blue"))
barplot(table(d$LT)/length(d$LT), main = 
"barplot()", xlab = "LT", ylab= "Density")
boxplot(d$LT, ylab = "LT", main = "boxplot()", col = 
"green")
pie(table(d$LT)/length(d$LT), main = "pie()")
par(op)
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