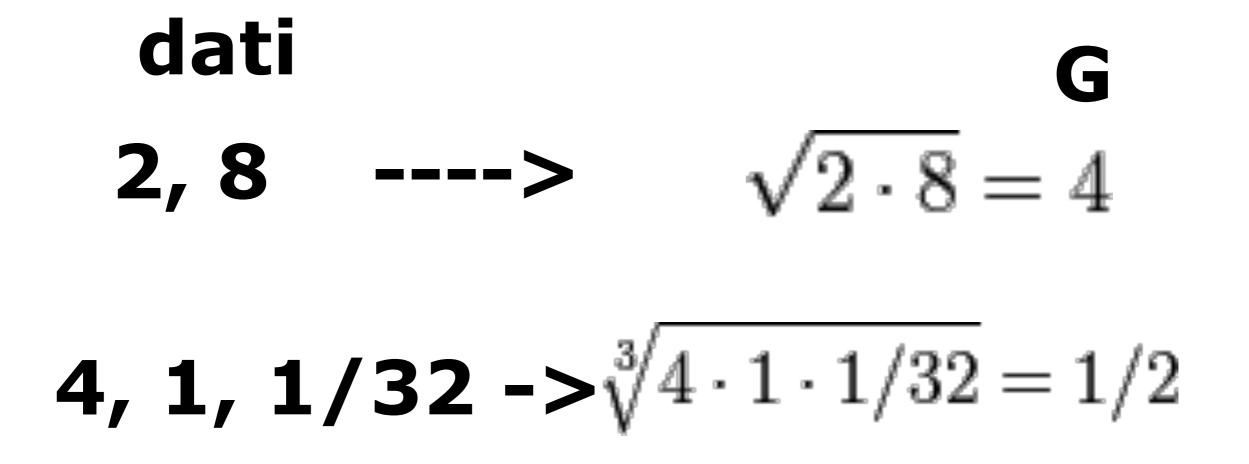
altre misure di centro e dispersione

media geometrica la radice n-esima del prodotto degli n dati



applicazioni

poco utilizzata nelle scienze sociali

è utile per rappresentare la tendenza centrale in distribuzioni non simmetriche

relazione con la media di log(x)

se logM è la media aritmetica di log(x)

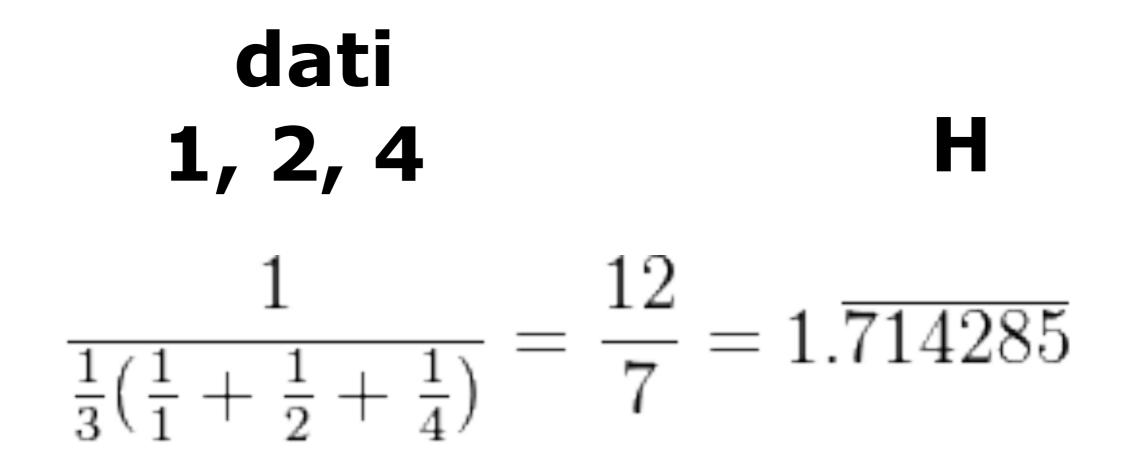
allora G = antilog(logM)

il logaritmo di x è il numero a cui va elevata la base per ottenere x: log10(100) = 2

l'antilogaritmo di log è il numero che si ottiene elevando la base alla potenza log: antilog10(2) =10^2 = 100

media armonica

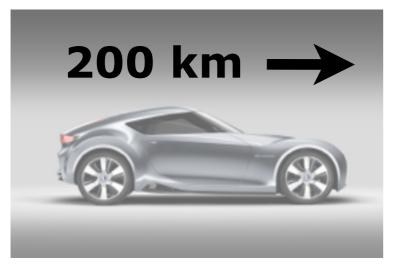
il reciproco della media dei reciproci dei dati



applicazioni

poco utilizzata nelle scienze sociali

usata in fisica in situazioni in cui occorre mediare rapporti o tassi di crescita



S 100 km 100 km

V 200 km/h 100 km/h

S	V	Т
100 km	200 km/h	0.5 h
100 km	100 km/h	1 h

- V media sui 200 km = S/T = 200/1.5 = 133 km/h
- media aritmetica = (200 + 100)/2 = 150 km/h!
- media armonica = 1/[(1/200 + 1/100)/2] = 133 km/h

- > d <- read.table("IQ.txt", header = TRUE)</pre>
- > ma <- mean(d\$Height)</pre>
- > mg <- prod(d\$Height)^(1/length(d\$Height))</pre>
- > mh <- 1/mean(1/d\$Height)</pre>

> ma [1] 68.5375

> mg [1] 68.42843

> mh [1] 68.32095

> exp(mean(log(d\$Height))) [1] 68.42843

> 10^mean(log10(d\$Height))
[1] 68.42843

> mg [1] 68.42843

deviazione mediana assoluta

mediana degli scarti non segnati dalla media

Median Absolute Deviation

mad()

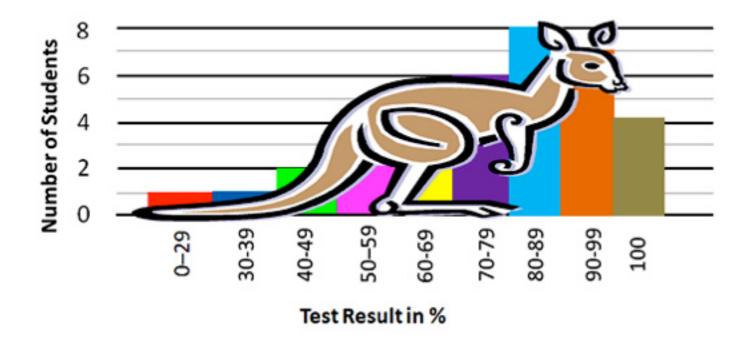
> mad(d\$Height)
[1] 3.33585

> sd(d\$Height)
[1] 3.943816

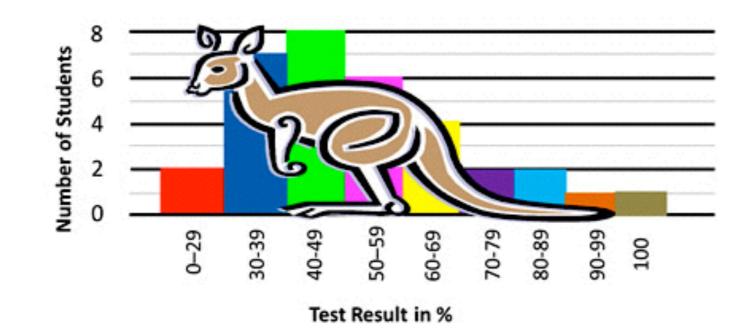
statistiche per la <u>forma</u> di una distribuzione

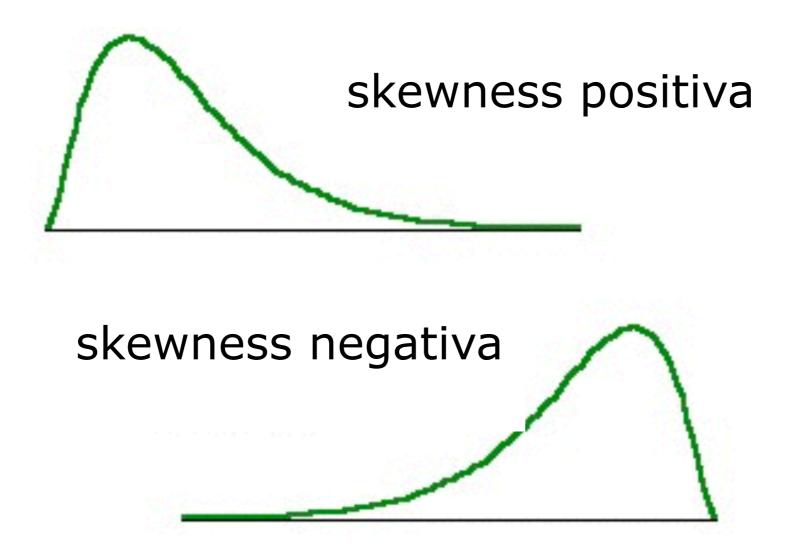
asimmetria (skewness)

Algebra Test Results – Class A – High Scoring



Algebra Test Results – Class B – Low Scoring



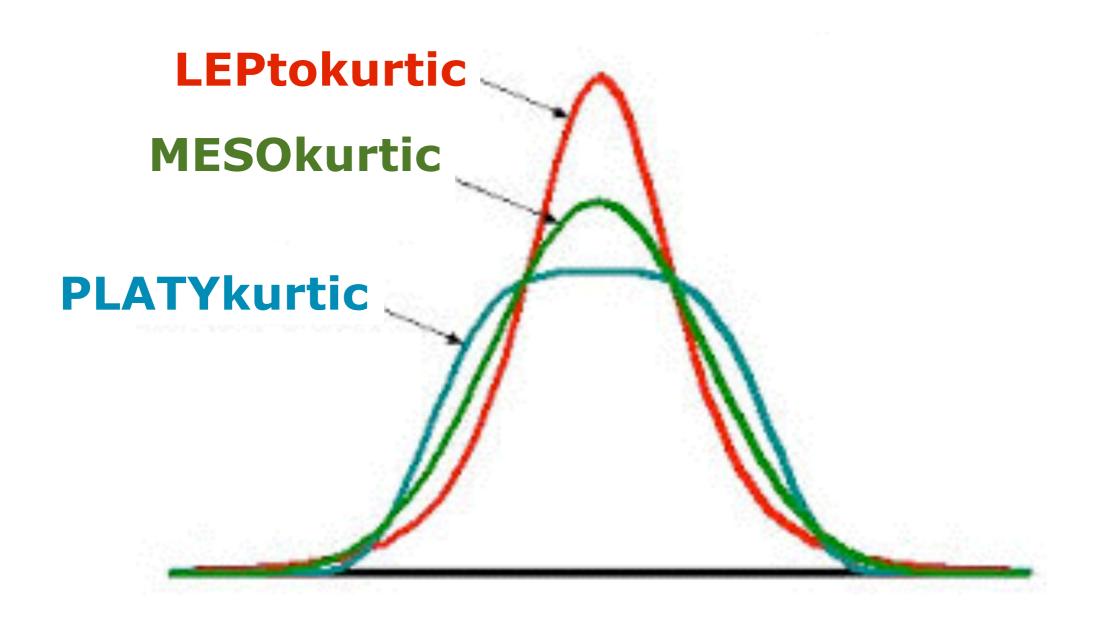


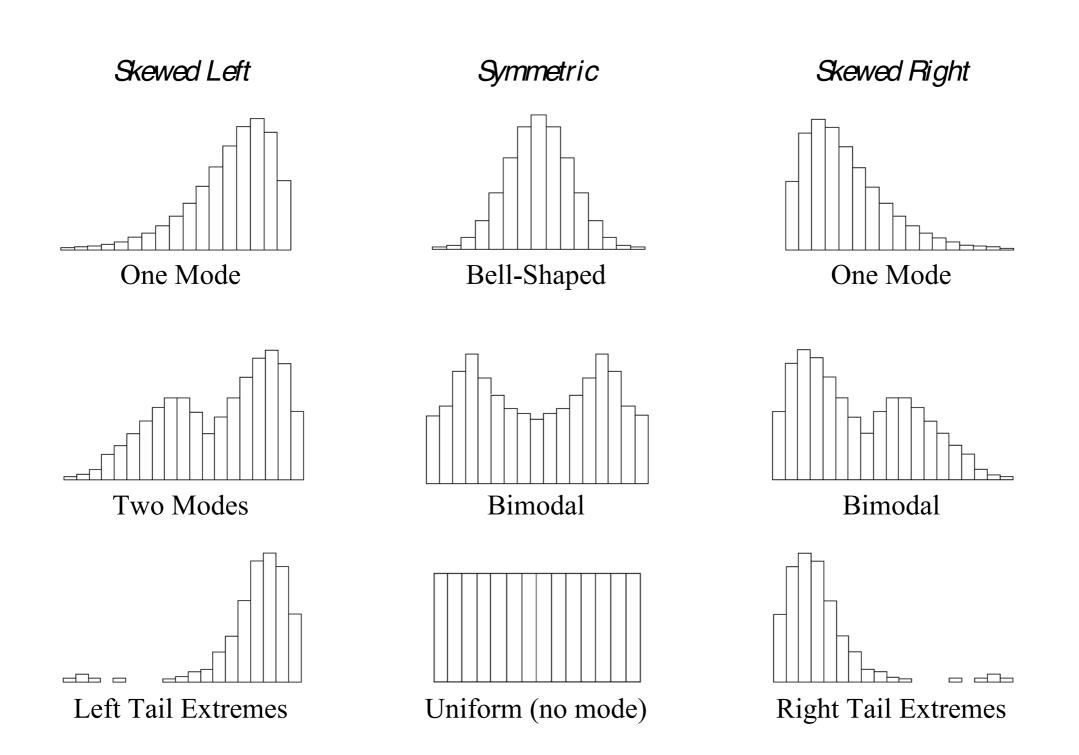
curtosi

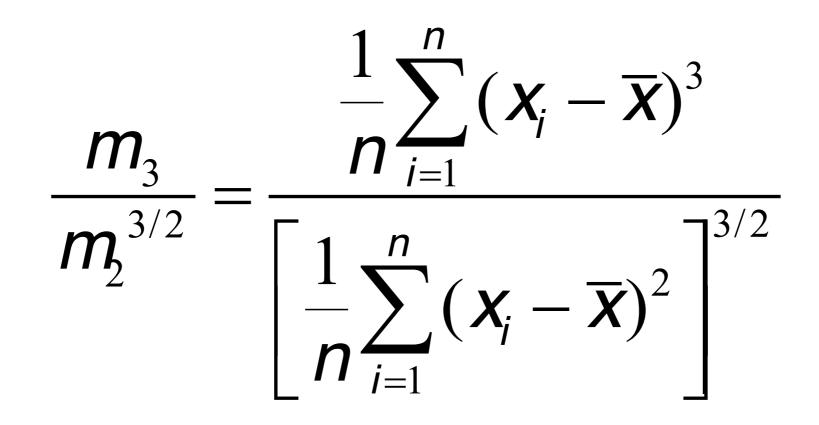
* In case any of my readers may be unfamiliar with the term "kurtosis" we may define mesokurtic as "having β_2 equal to 3," while platykurtic curves have $\beta_2 < 3$ and leptokurtic > 3. The important property which follows from this is that platykurtic curves have shorter "tails" than the

normal curve of error and leptokurtic longer "tails." I myself bear in mind the meaning of the words by the above *memoria technica*, where the first figure represents platypus, and the second kangaroos, noted for "lepping," though, perhaps, with equal reason they should be hares!

Student (1927) Biometrika, 19, 160







$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{3} \text{ Chiorri}$$

$$= \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} \left(\frac{\mathbf{x}_{i} - \overline{\mathbf{x}}}{s}\right)^{3} =$$

$$= \frac{\sqrt{n(n-1)}}{n-2} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{3}}{\left[\frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}\right]^{3/2}}$$
correzione
per n piccoli

Measuring Skewness: A Forgotten Statistic?

David P. Doane Oakland University

Lori E. Seward University of Colorado

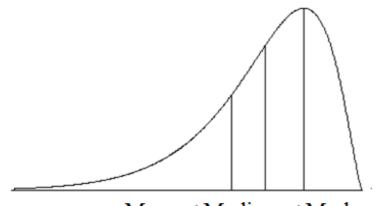
Abstract

This paper discusses common approaches to presenting the topic of skewness in the classroom, and explains why students need to know how to measure it. Two skewness statistics are examined: the Fisher-Pearson standardized third moment coefficient, and the Pearson 3 coefficient that compares the mean and median.

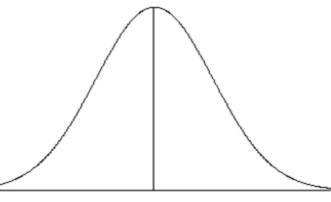
This paper suggests reviving the Pearson 3 skewness statistic for the introductory statistics course because it compares the mean to the median in a precise way that students can understand. The paper reiterates warnings about what any skewness statistic can actually tell us.

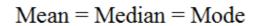
skewness media, mediana e moda

Skewed Left Long tail points left Symmetric Normal Tails are balanced *Skewed Right* Long tail points right



Mean < Median < Mode



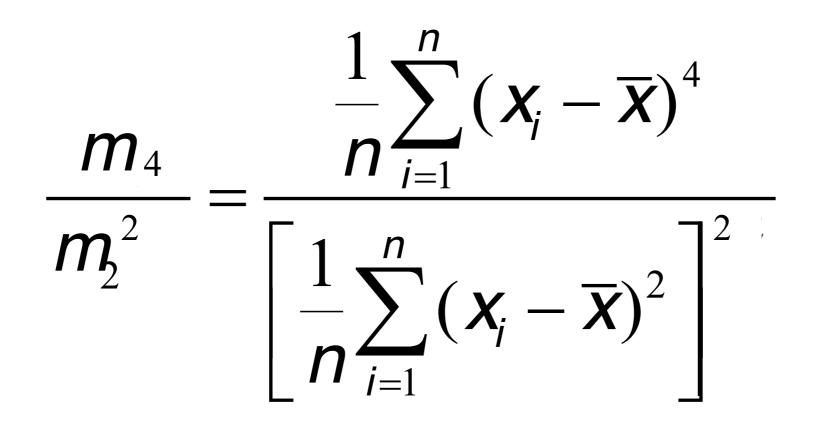


Mode < Median < Mean

SK3 di Pearson

SK3 = 3(media - mediana) / DS

SK1 = (media - moda) / DS SK2 = 3(media - moda) / DS



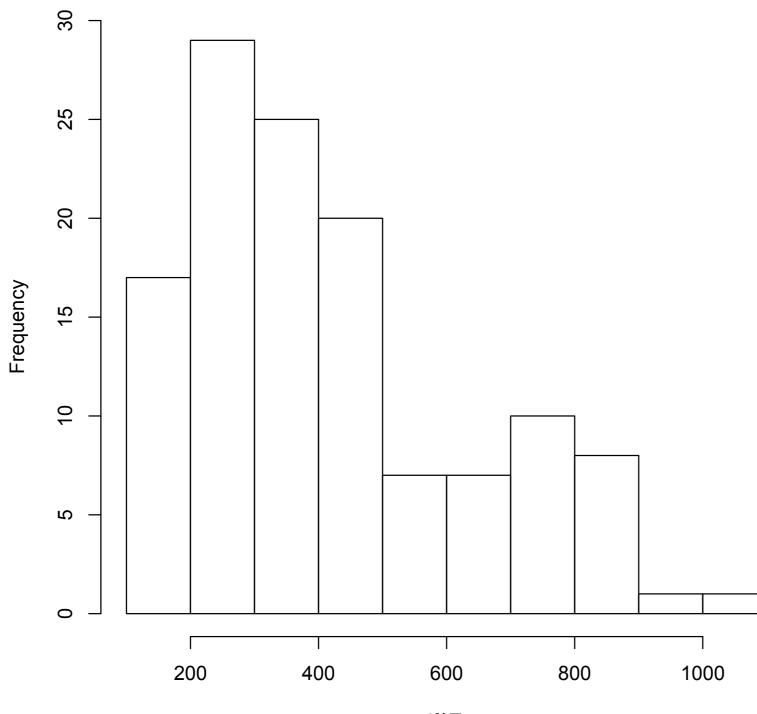
> df <- read.table("~/Desktop/dati completi.txt", header = TRUE)

> head(df)

	OvsR	Sex	HAND	RVF	LIKF	Ts S	PAF	Eng cor	mpito
1	Ο	f	dx -3.987	3143 1	.500000	190	1.0	1	С
			dx -0.435					2	cd
3	R	f	dx 3.685	7530 3.	500000	491	2.5	1	cd
4	Ο	m	dx -1.484	2264 5	.666667	277	6.0	1	С
5	R	m	dx -1.321	1927 6.	000000	480	7.0	2	cd
6	R	m	dx -0.226	2290 4.	166667	265	3.0	2	С

> hist(df\$Ts)

Histogram of df\$Ts



df\$Ts

df <- read.table("~/Desktop/dati
 completi.txt", header = TRUE)</pre>

```
sk <- num/den
```

```
num <- sum((df$Ts - m)^4)/n
den <- (sum((df$Ts - m)^2)/n)^2
ku <- num/den</pre>
```

> sk [1] 0.911130

> ku [1] 2.884776

> library(moments)

> skewness(df\$Ts)
[1] 0.9111309

> kurtosis(df\$Ts) [1] 2.884776

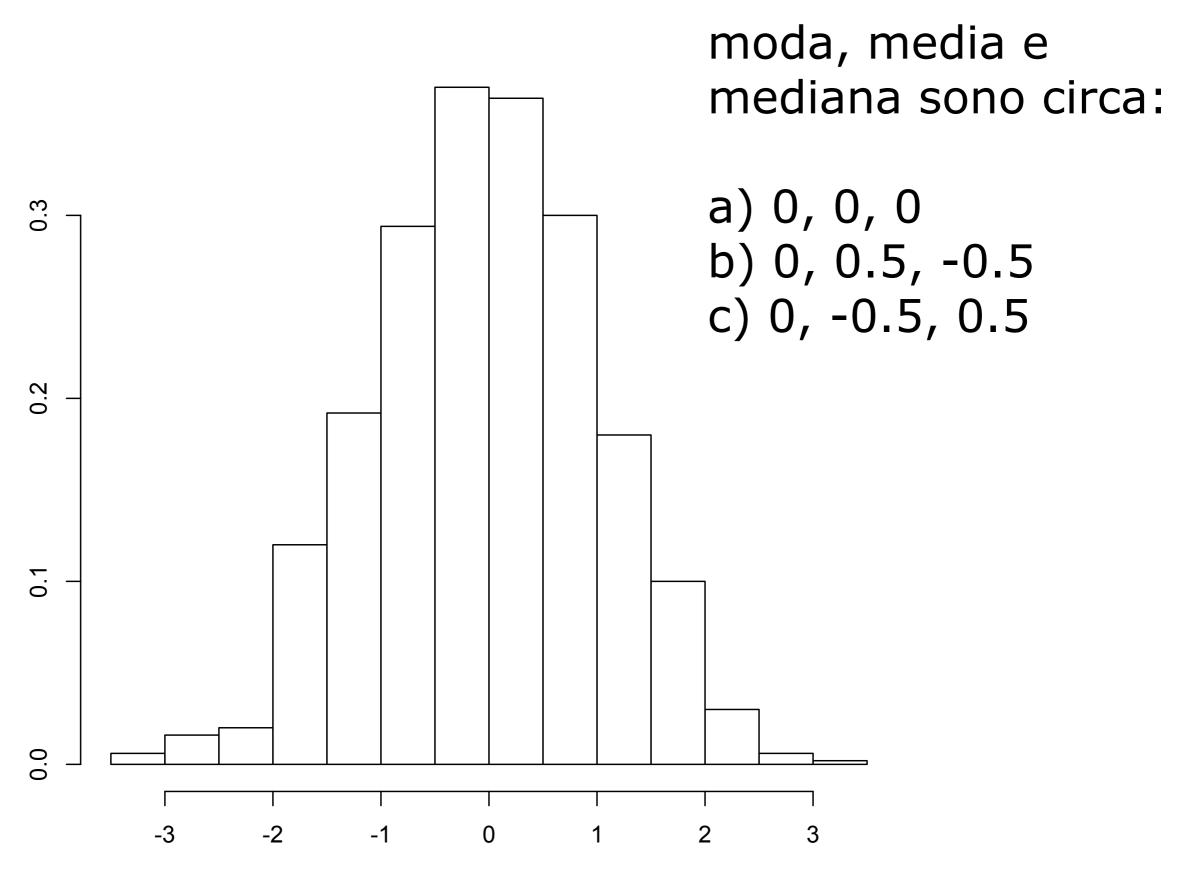
riassumendo

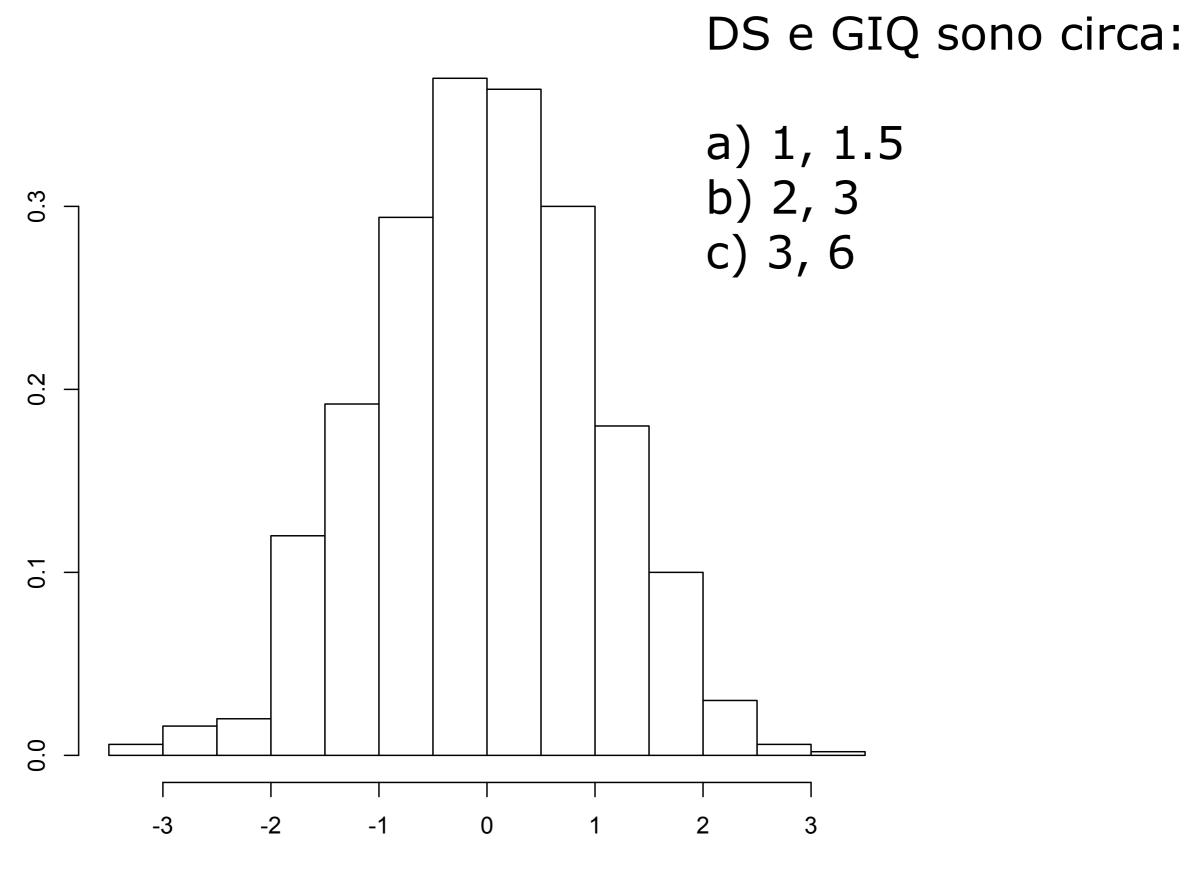
la *skewness* è 0 se la distribuzione è simmetrica, <0 se ha coda sinistra e >0 se ha coda a destra

la curtosi è 3 se la distribuzione è normale, >3 se è leptocurtica e <3 se è platicurtica

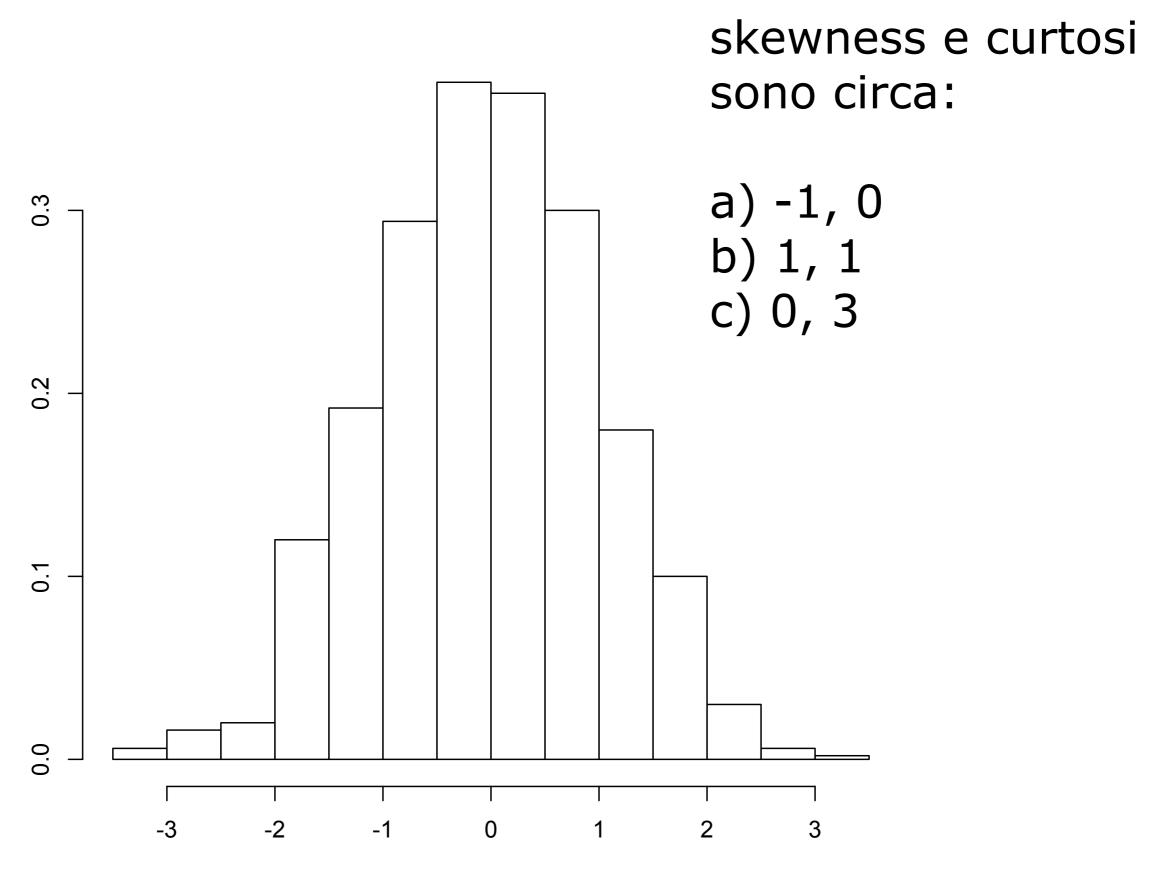
alcuni programmi calcolano il <u>coefficiente di eccesso</u> ku - 3, in tal caso la distribuzione normale ha curtosi 0 (R non lo fa)

facciamo un po' di esercizio

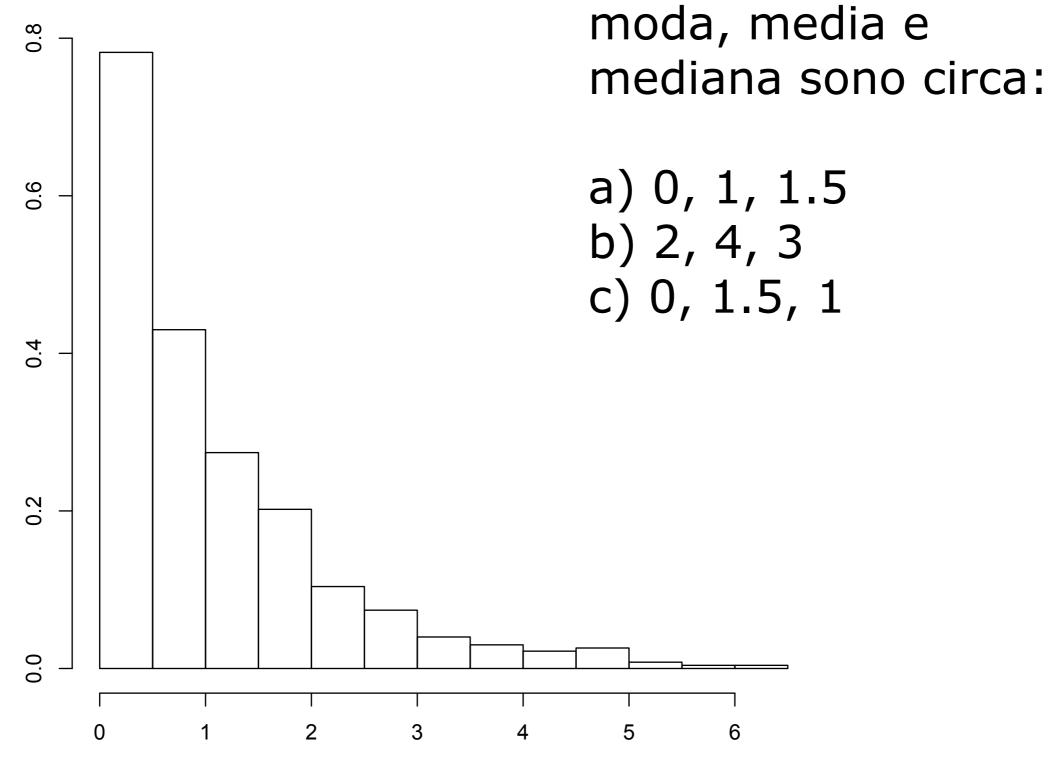




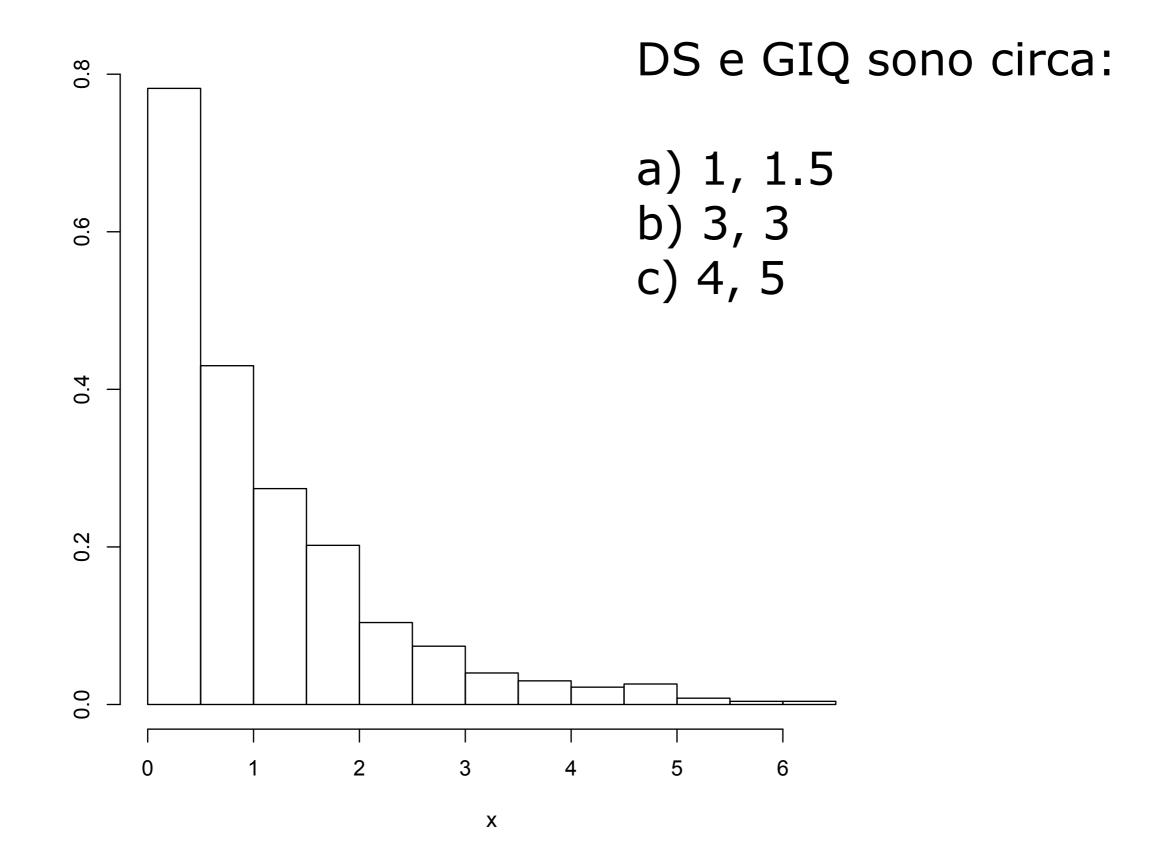
Х

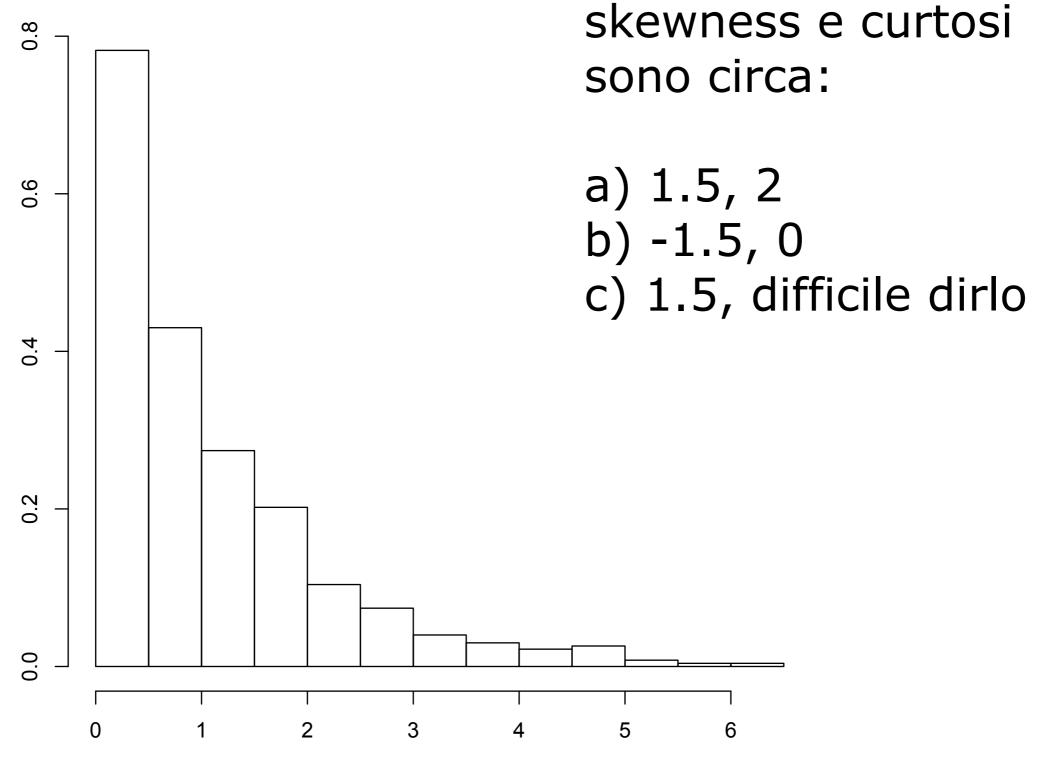


Х

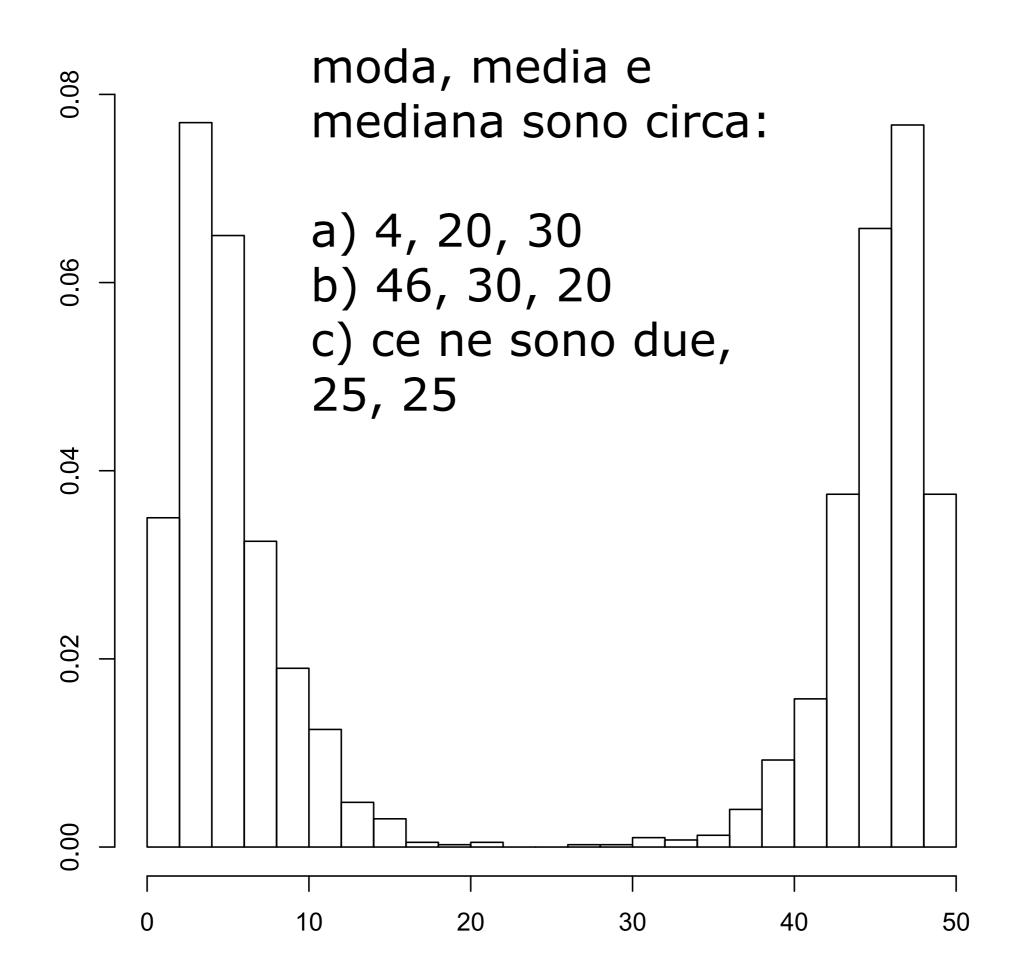


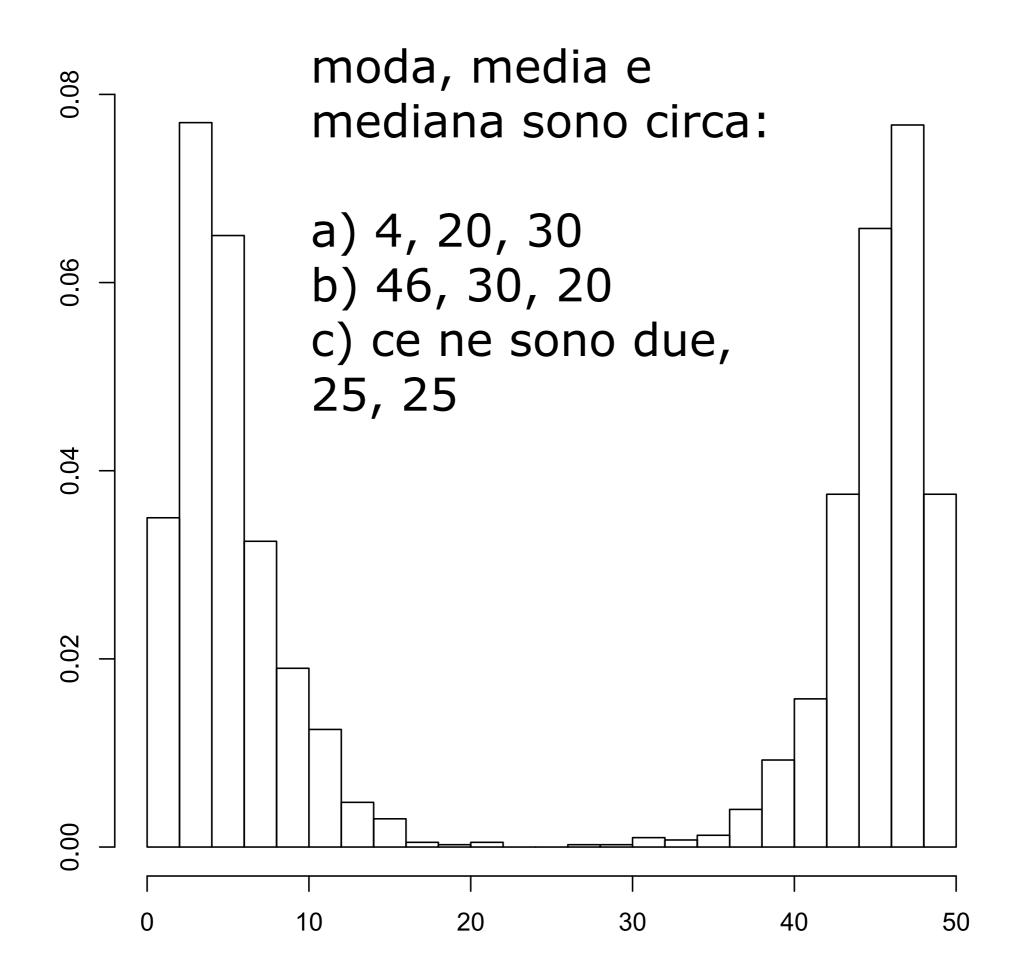
Х

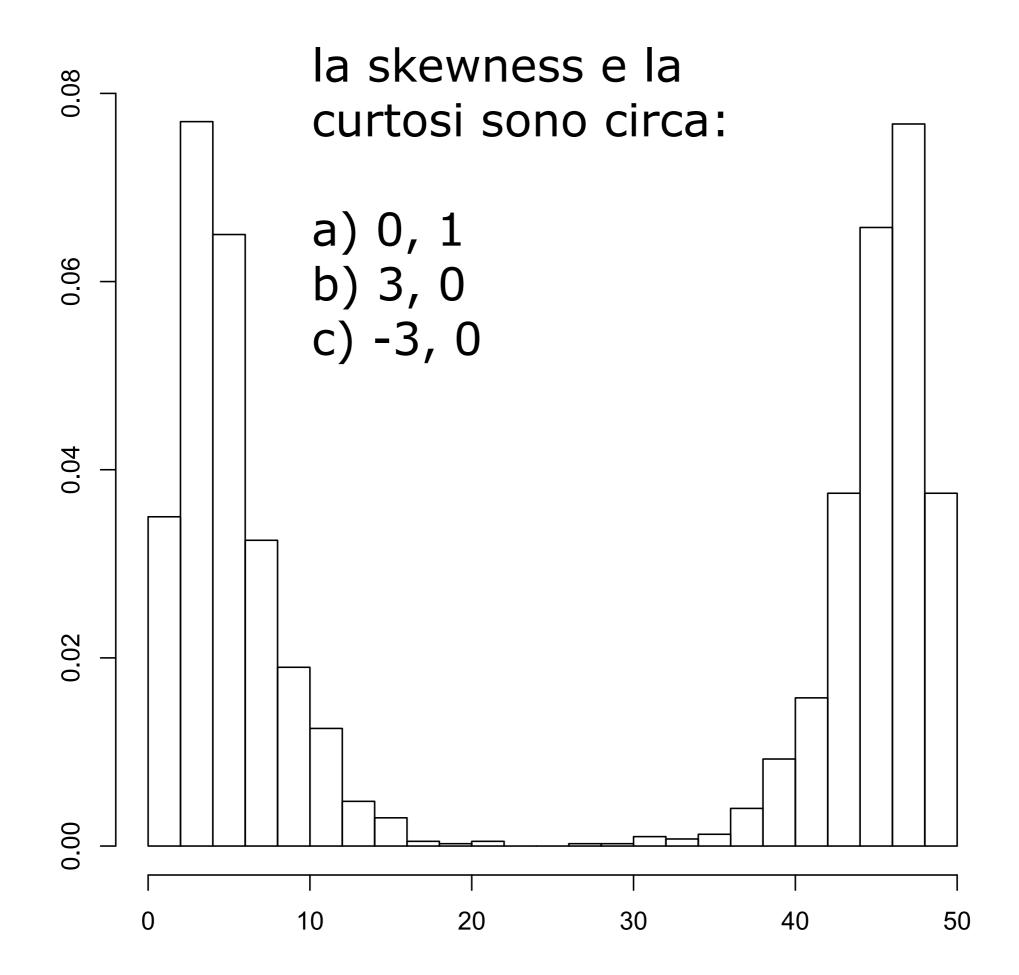




Х





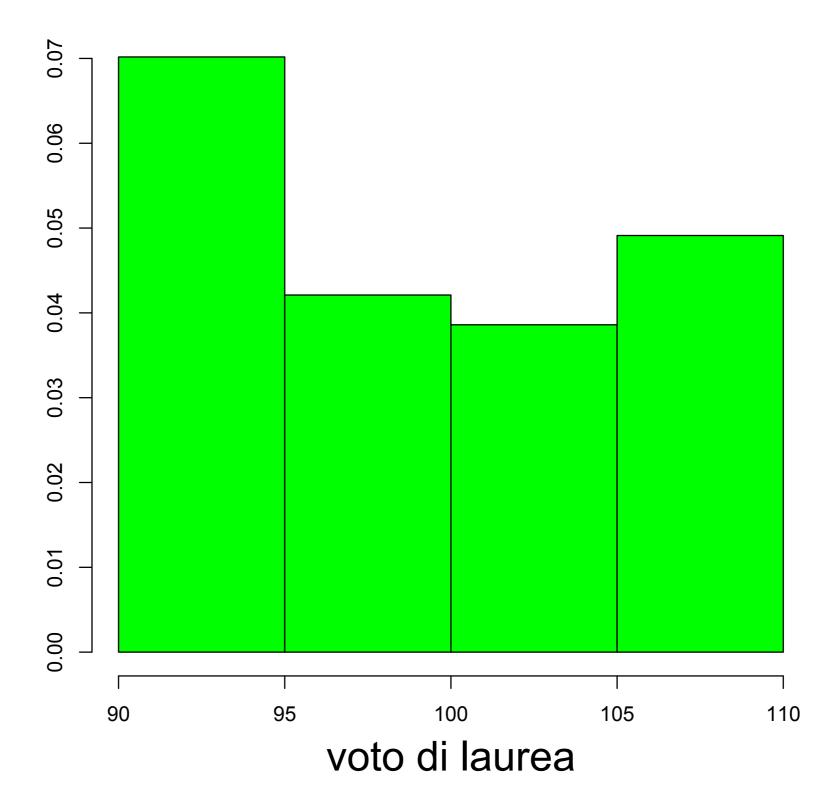


standardizzazione

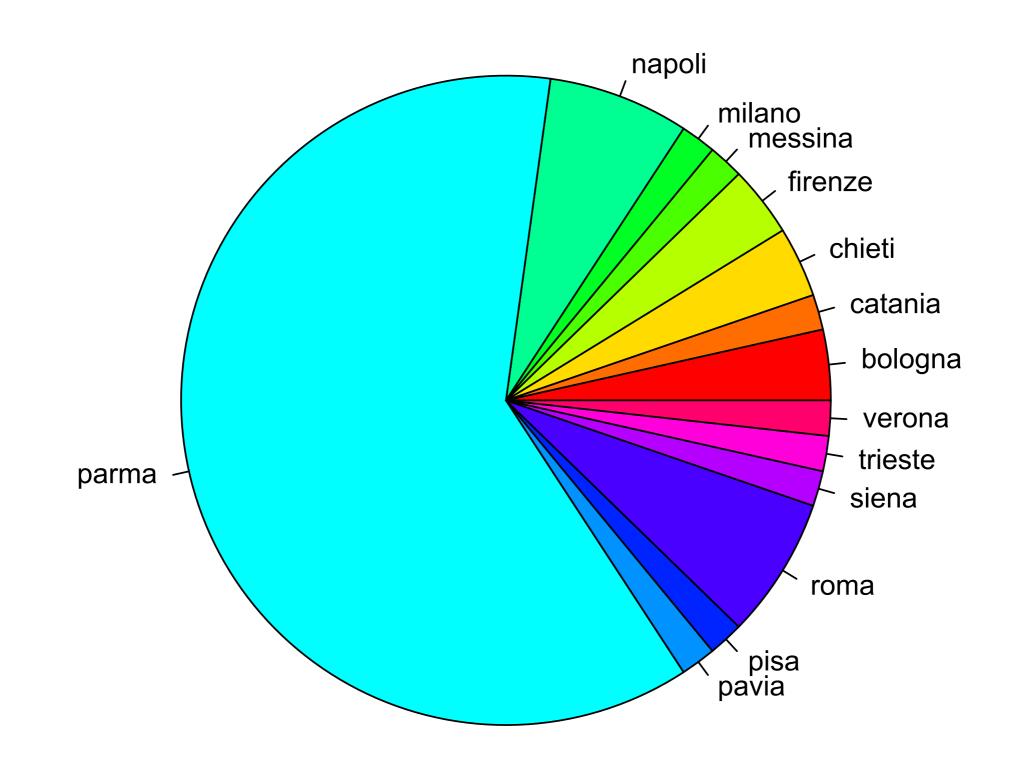
> d <- read.table("~/Desktop/VL.txt", header = TRUE)

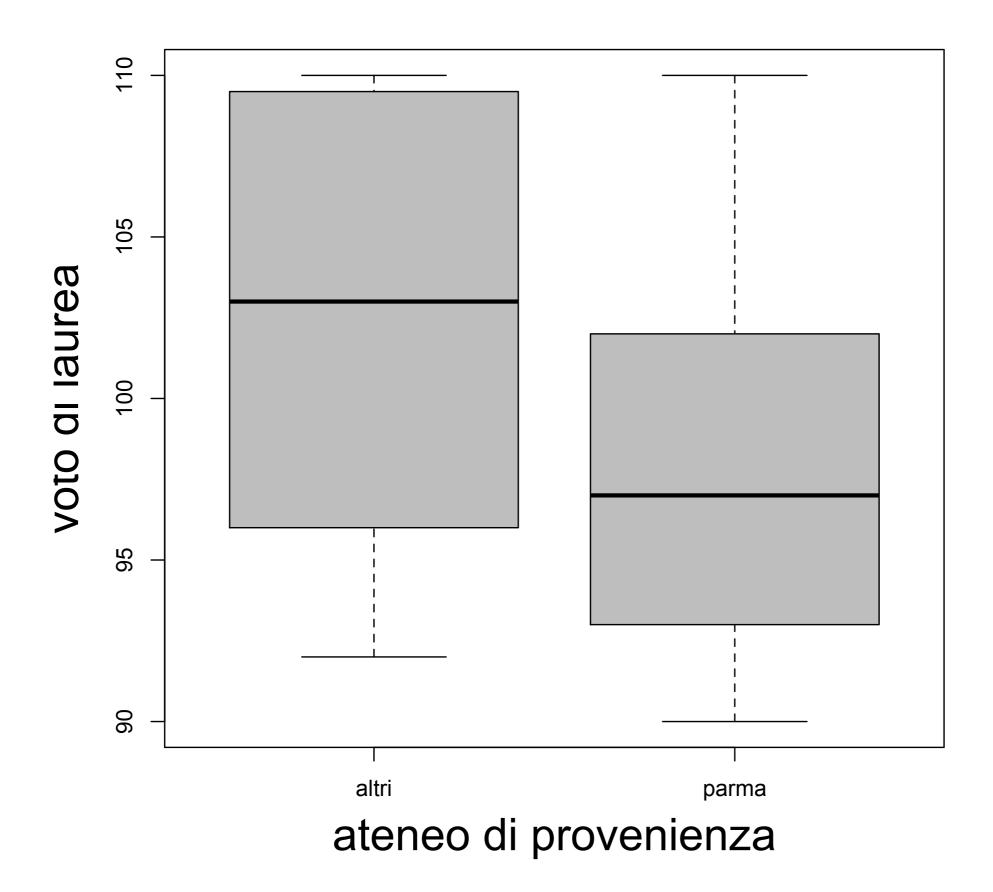
- > head(d)
 UN VL PR
- 1 parma 92 1
- 2 parma 94 1
- 3 parma 93 1
- 4 parma 90 1
- 5 roma 109 0
- 6 parma 103 1

57 studenti ammessi



ateneo di provenienza



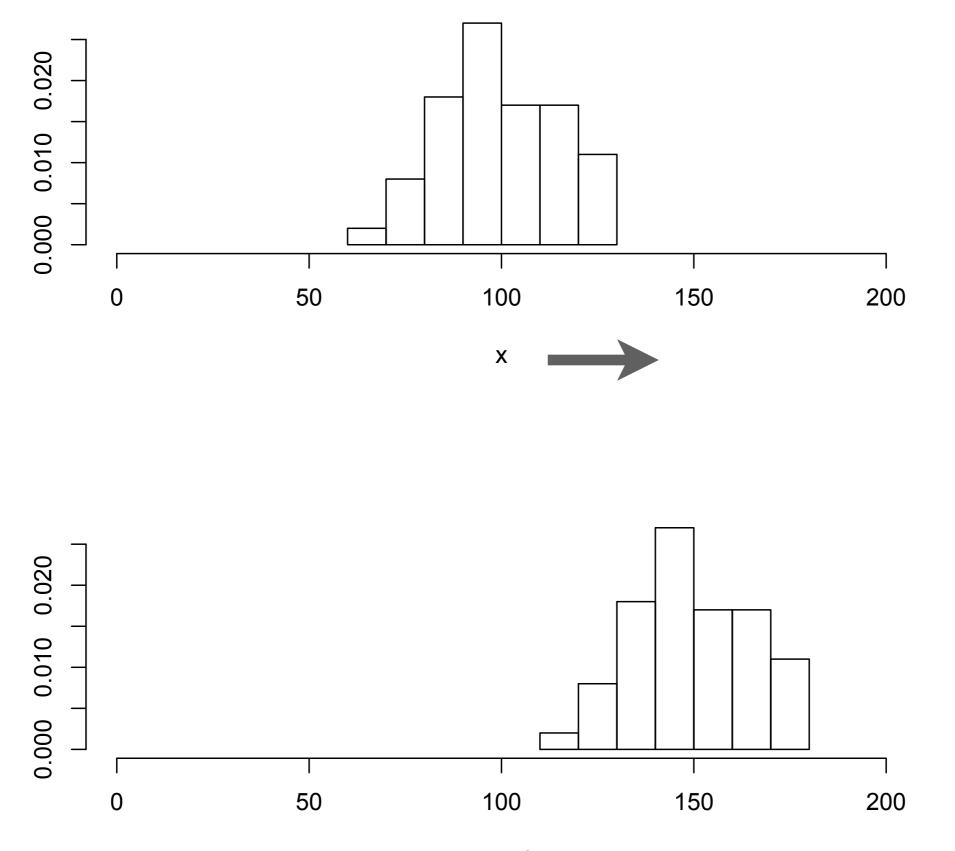


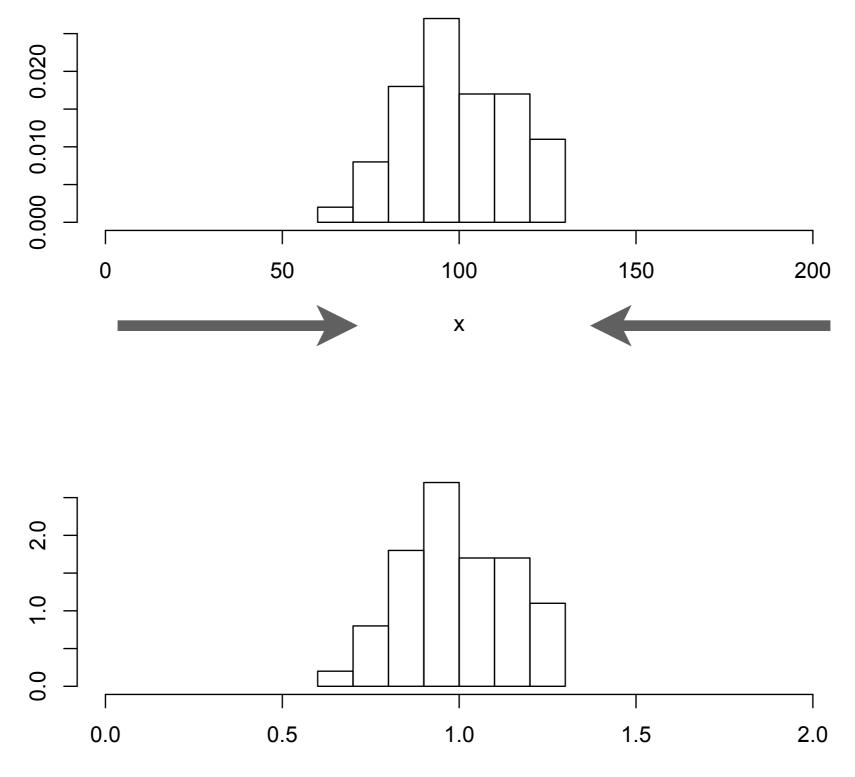
standardizzazione

una traslazione

╋

un cambio di scala





x/100

Fahrenheit --> Celsius

C = (F - 32) / 1.8

traslazione

cambio di scala

> (10 - 32)/1.8 [1] -12.22222

> (32 - 32)/1.8 [1] 0

> (70 - 32)/1.8
[1] 21.11111

> (90 - 32)/1.8 [1] 32.22222

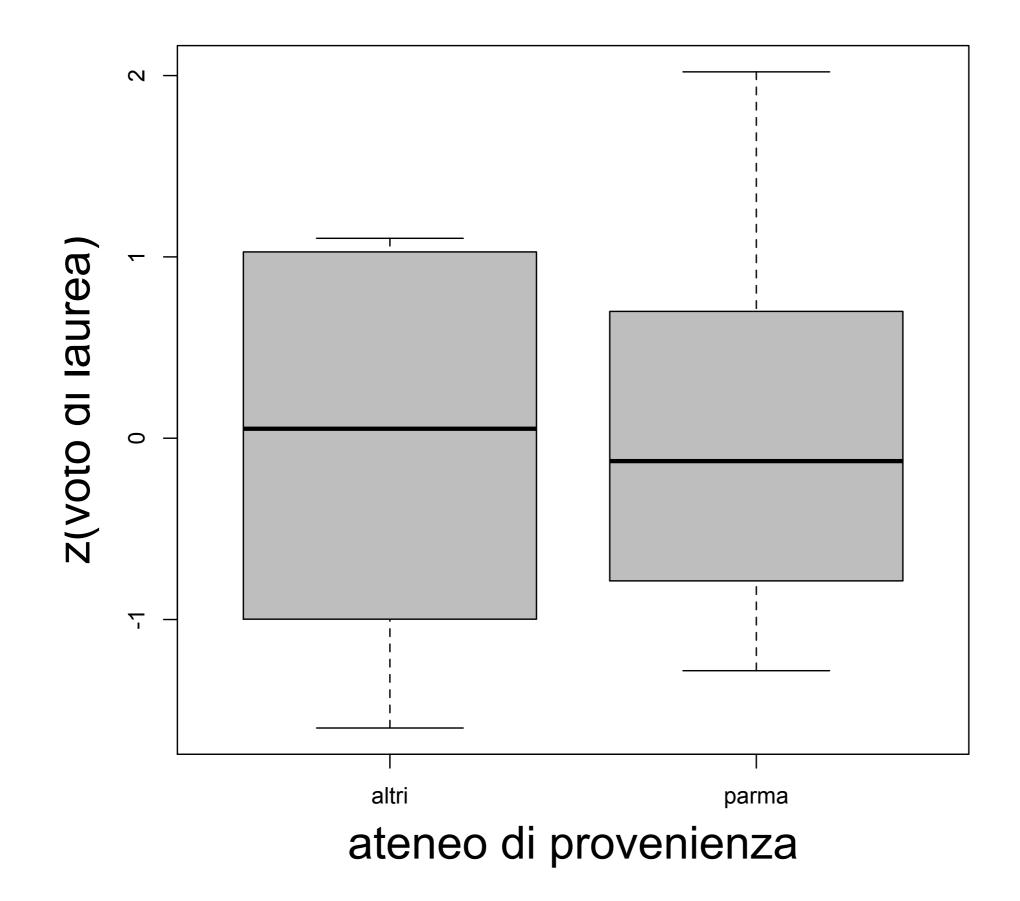
standardizzazione

traslazione: M --> 0

+

cambio di scala: DS = 1

> boxplot(za, zp, names = c("altri", "parma"), xlab = "ateneo di provenienza", cex.lab = 2, col = "grey", ylab = "z(voto di laurea)")



scorciatoia

> tapply(d\$VL, d\$PR, scale)

\$`0`

\$ U
[,1]
[1,] 0.95244689
[2,] -1.29819815
[3,] 0.05218887
[4,] 0.65236088
[5,] 1.10248989
[6,] 0.65236088
[7,] 1.10248989
[8,] -1.29819815
[9,] -0.84806915
[10,] 0.05218887
[11,] 1.10248989
[12,] -1.59828416
[13,] -0.69802614
[14,] 0.35227488
[15,] 1.10248989
[19,] -1.29819815
[20,] 1.10248989
[21,] -1.44824116
[22,] -1.14815515
[23,] 1.10248989
<pre>attr(,"scaled:center")</pre>
[1] 102.6522
attr(,"scaled:scale")
[1] 6.664756

\$`1`
1
[,1]
[1,] -0.95196357
[2,] -0.62169049
[3,] -0.78682703
[4,] -1.28223664
[5,] 0.86453834
[6,] -1.28223664
[7,] 2.02049410
[8,] 1.19481141
[9,] 0.03885566
[10,] -0.29141742
[11,] 0.69940180
[12,] -0.78682703
[13,] 0.53426527
[14,] 0.53426527
[15,] -1.11710010
[16,] 0.36912873
[17,] -0.95196357
[18,] 1.02967488
[19,] -0.29141742
[20,] -1.28223664
[21,] 0.69940180
[22,] -1.11710010
[23,] -1.11710010

[24,] 1.52508449 [25,] 0.36912873 [26,] -0.45655396 [27,] -0.12628088 [28,] -0.78682703 [29,] -0.12628088 [30,] -0.45655396 [31,] 2.02049410 [32,] -0.12628088 [33,] 0.03885566 [34,] 2.02049410 attr(,"scaled:center") [1] 97.76471 attr(,"scaled:scale") [1] 6.055595

trasformazione logaritmica

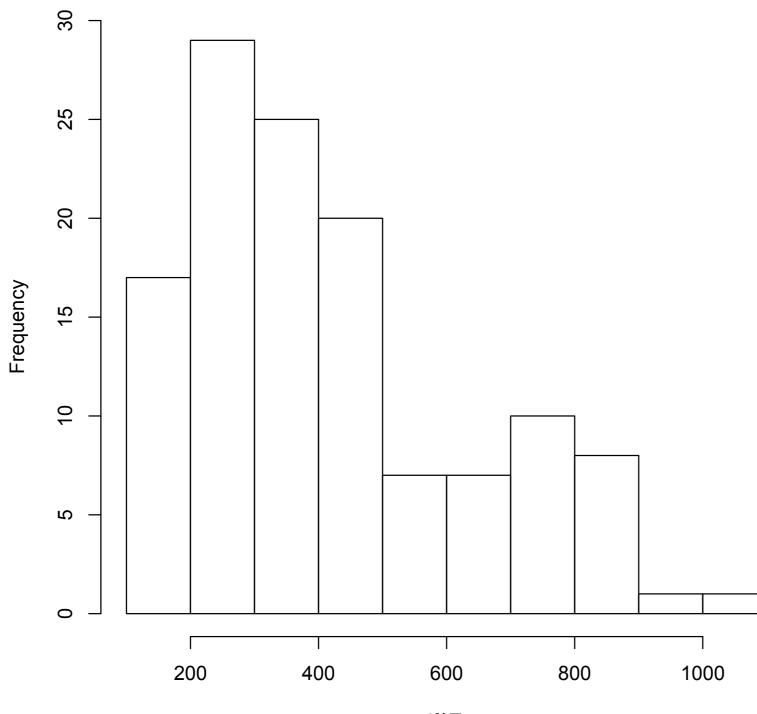
> df <- read.table("~/Desktop/dati completi.txt", header = TRUE)

> head(df)

	OvsR	Sex	HAND	RVF	LIKF	Ts S	PAF	Eng cor	mpito
1	Ο	f	dx -3.987	3143 1	.500000	190	1.0	1	С
			dx -0.435					2	cd
3	R	f	dx 3.685	7530 3.	500000	491	2.5	1	cd
4	Ο	m	dx -1.484	2264 5	.666667	277	6.0	1	С
5	R	m	dx -1.321	1927 6.	000000	480	7.0	2	cd
6	R	m	dx -0.226	2290 4.	166667	265	3.0	2	С

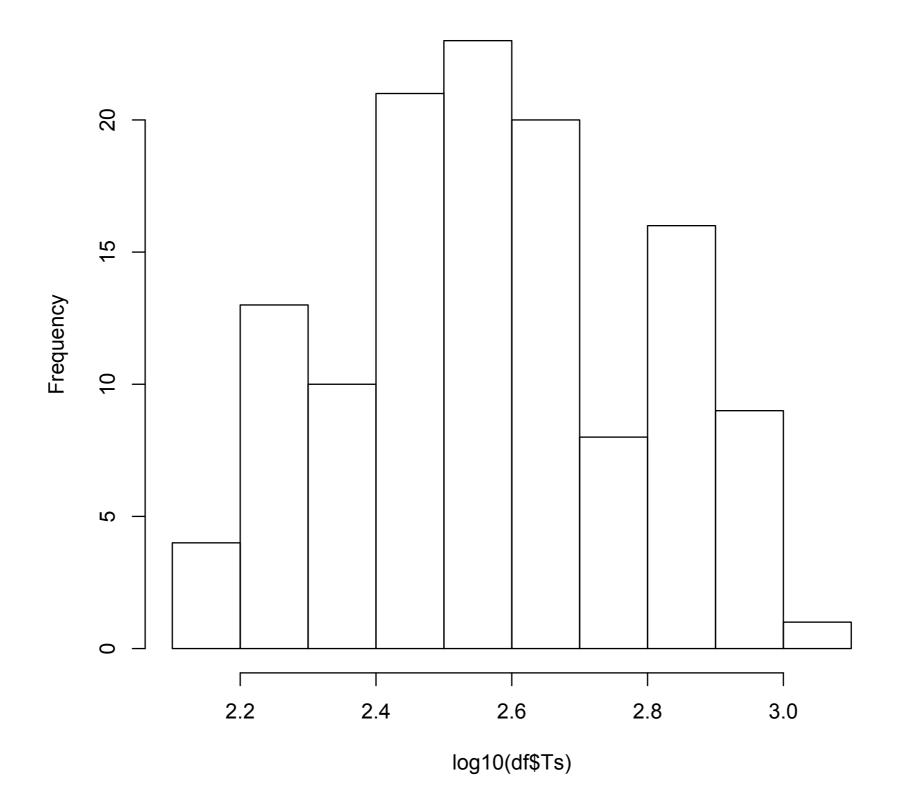
> hist(df\$Ts)

Histogram of df\$Ts



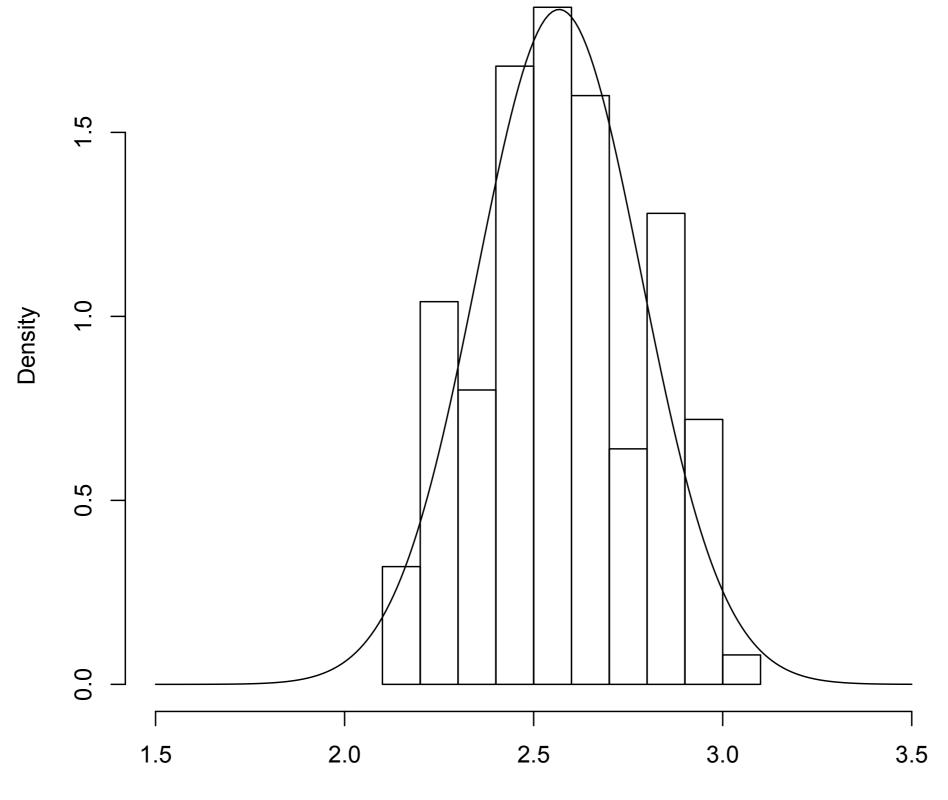
df\$Ts

> hist(log10(df\$Ts))



- > library(moments)
- > skewness(df\$Ts)
 [1] 0.9111309
- > skewness(log10(df\$Ts))
 [1] 0.1454733
- > kurtosis(df\$Ts)
 [1] 2.884776

> kurtosis(log10(df\$Ts))
[1] 2.129199

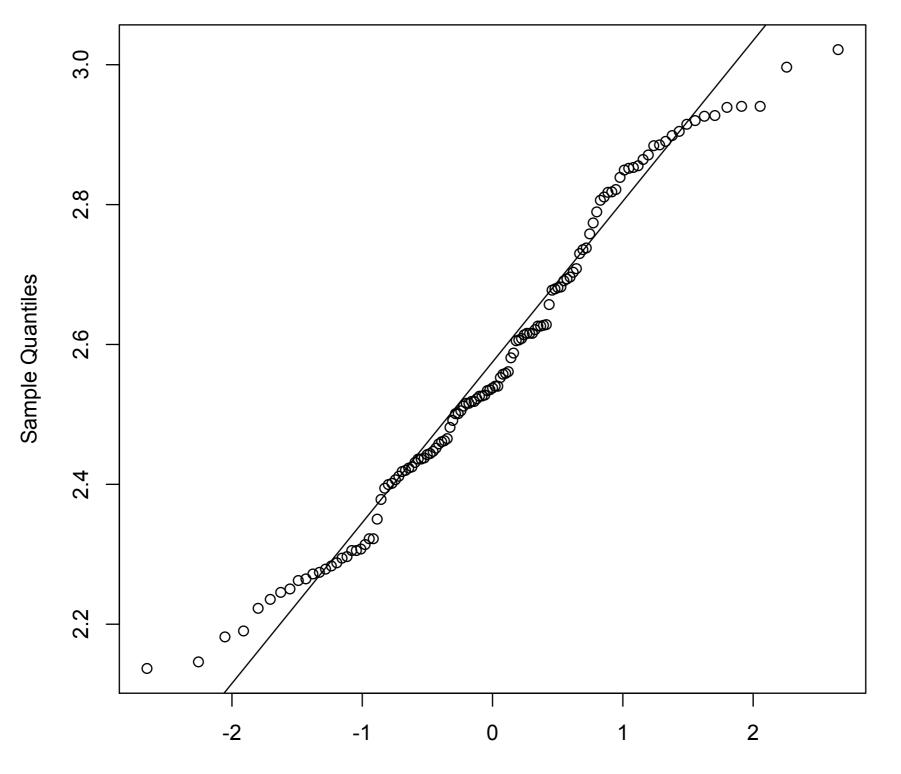


log10(t)

plot quantile-quantile normale

> qqnorm(log10(df\$Ts))
> qqline(log10(df\$Ts))

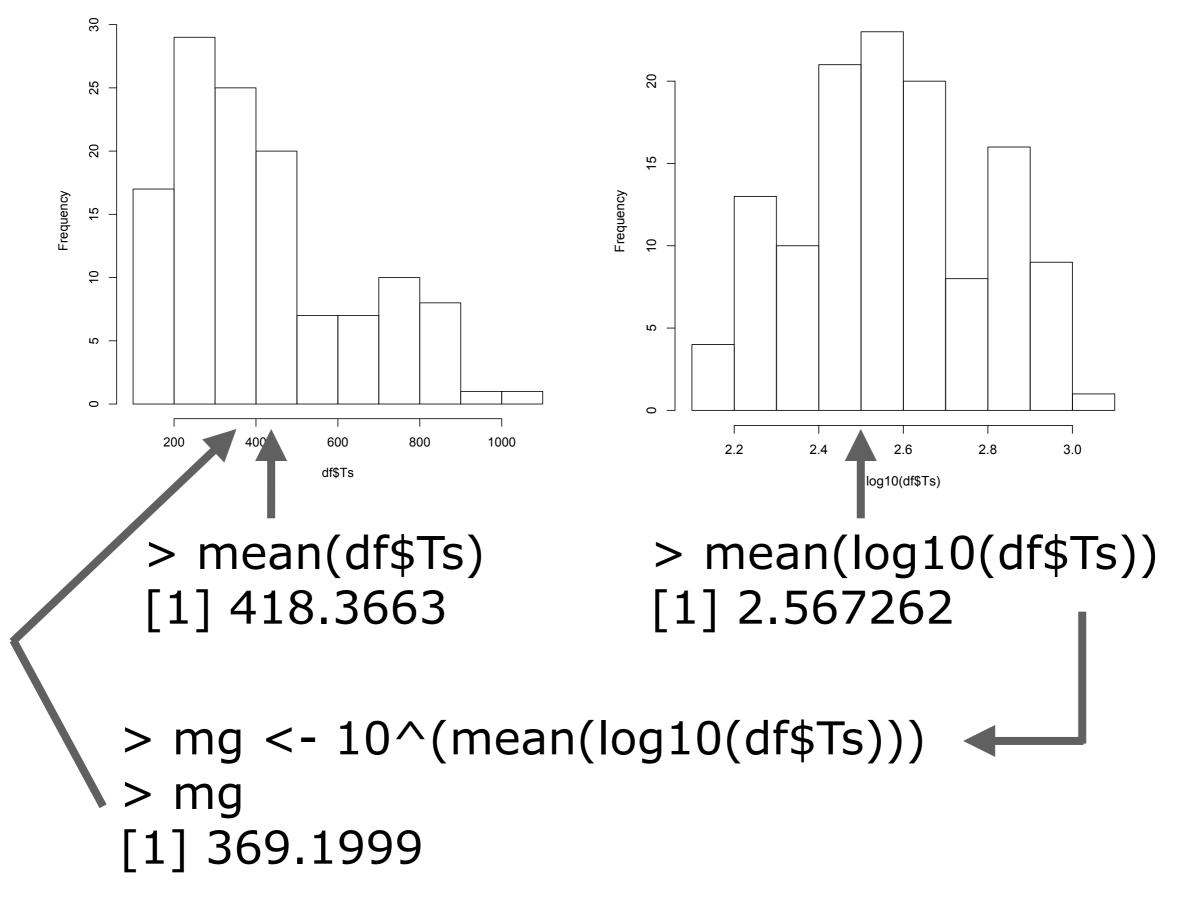
Normal Q-Q Plot



Theoretical Quantiles

Histogram of df\$Ts

Histogram of log10(df\$Ts)



grafici in R (elementi di)

vedi:

Packages & Data Package Manager Package Installer Data Manager

graphics

funzioni di basso livello per gli elementi grafici

funzioni di alto livello per grafici preconfezionati

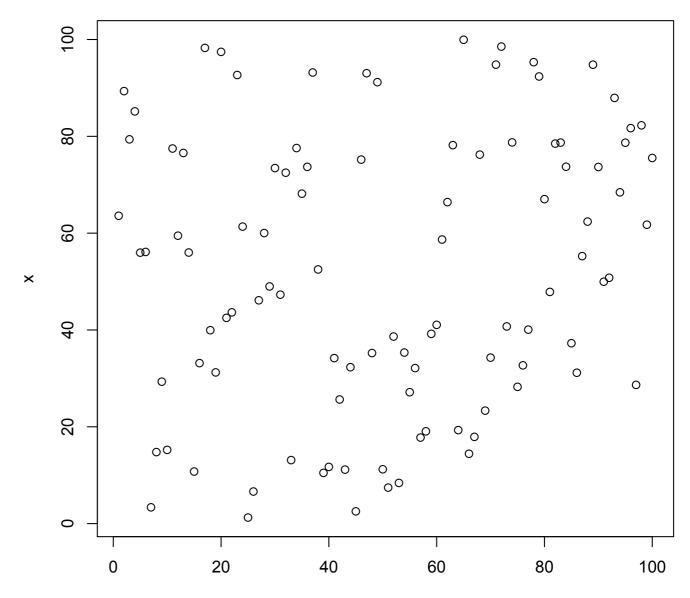
tipica maniera di procedere

generare i grafici che mi servono con funzioni di alto livello

"annotare" usando ulteriori funzioni di basso livello

> x <- runif(100, 0, 100)</pre>

> plot(x)

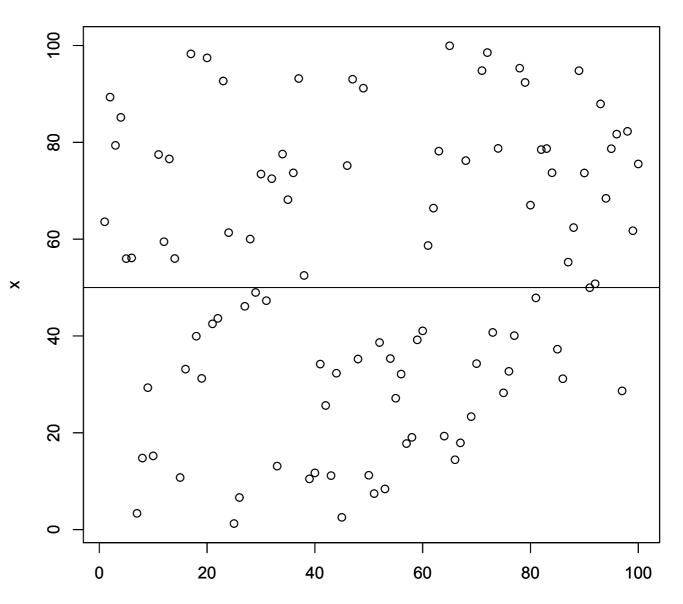


Index

> x <- runif(100, 0, 100)</pre>

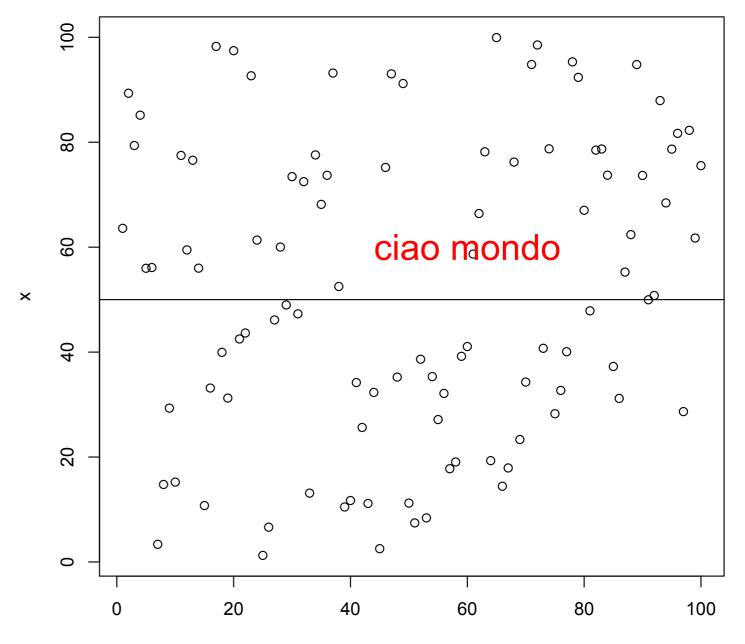
> plot(x)

> abline(h = 50)



Index

> plot(x)
> abline(h = 50)
> text(60, 60,
"ciao mondo",
col = "red",
cex = 2)

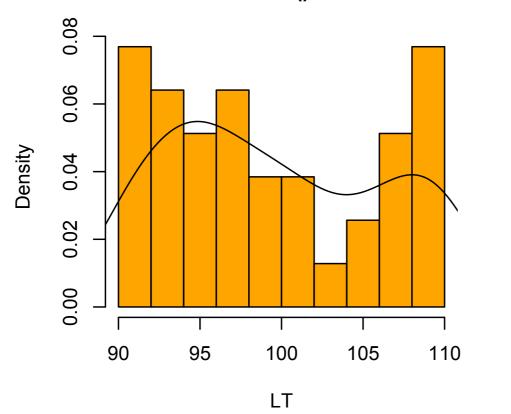


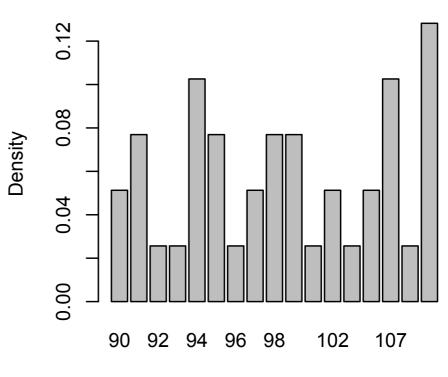
Index

farsi un'idea

> demo(graphics)

d <- read.table("~/Desktop/LT.txt", header = TRUE)</pre> op <- par(mfrow = c(2, 2))hist(d\$LT, prob = TRUE, main = "hist()", xlab = "LT", col = "orange") lines(density(d\$LT, col = "blue")) barplot(table(d\$LT)/length(d\$LT), main = "barplot()", xlab = "LT", ylab= "Density") boxplot(dLT, ylab = "LT", main = "boxplot()", col ="green") pie(table(d\$LT)/length(d\$LT), main = "pie()") par(op)





LT

boxplot()

Ľ

- 90

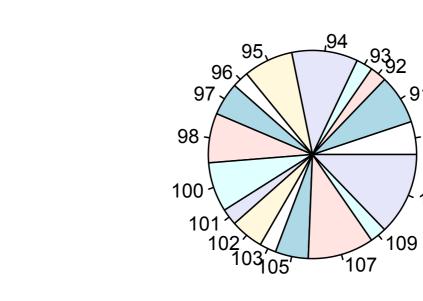
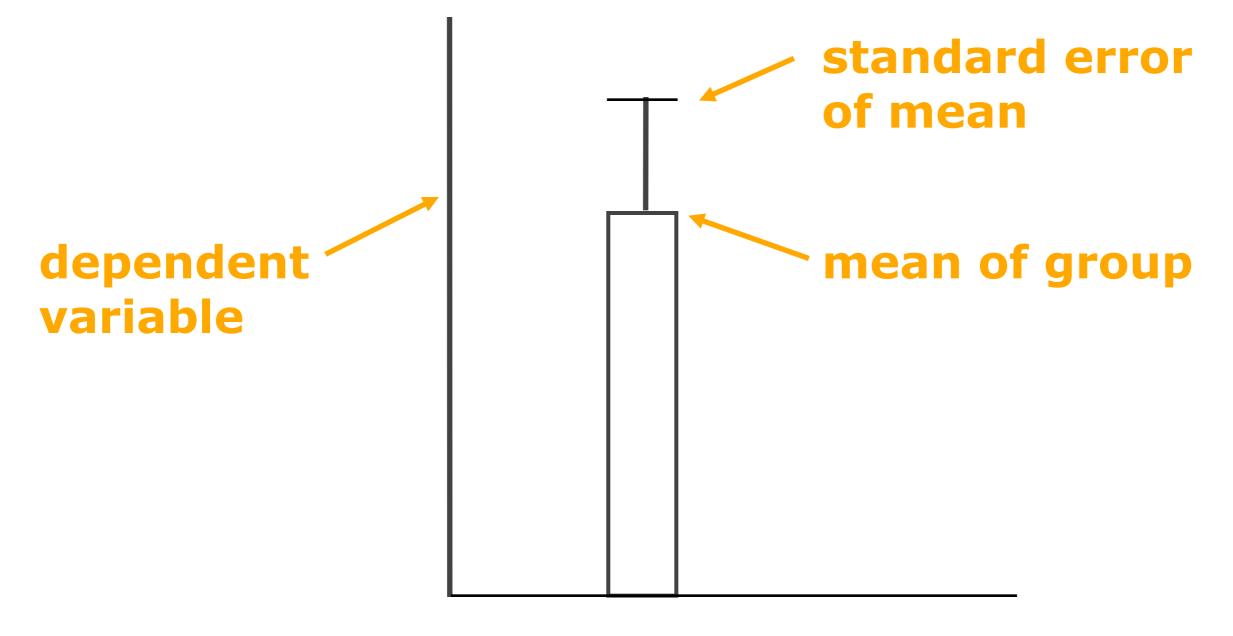


diagramma a barre



one group

