same di Algebra e Geometria - 9 CFU Lucia Alessandrini · 8/9/2015 _	
Cognome e nome	
Matricola e Corso di Laurea	
Scrivere la risposta negli spazi, senza giustificarla.	
1. Sia α il piano di equazione: $x + y - z - 1 = 0$.	
Una retta ortogonale ad α e passante per $(2,2,0)$ è	
Una retta che giace su $lpha$ e ortogonale all'asse z (se esiste) è	
Un piano parallelo ad $lpha$ è $ig $	
2. Considerare i vettori $u = (1,0,h), v = (2,-1,1), w = (h,1,-1).$	
I valori di h per cui u,v,w sono linearmente indipendenti sono $\ \cdot\ $	
I valori di h per cui u,v,w sono allineati sono $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
$v imes w = $ $pr_v w = $	
3. Calcolare l'insieme delle soluzioni del sistema $\begin{cases} 2x + y - z = 1 \\ x + z = 0 \end{cases}$	
3. Calcolare l'insieme delle soluzioni dei sistema $\begin{cases} x+z=0\\ x+2y-z=2 \end{cases}$	
Sol(A,b) =	
Cosa rappresenta geometricamente questo insieme nello spazio?	
Se l'affermazione è vera, fare una croce su (V), se è falsa, su (F)	

- (V) (F) Se una retta è ortogonale a un piano, lo interseca in un punto.
- (V) (F) Ogni sistema omogeneo con 4 equazioni e 2 incognite è risolubile.
- (V) (F) Se (G, *, e) e' un gruppo, l'operazione * e' associativa e commutativa.
- (V) (F) $L: \mathbb{R}^5 \to \mathbb{R}$ definita da $L(x_1, x_2, x_3, x_4, x_5) = x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5$ è una applicazione lineare.
- (V) (F) Se $L: \mathbb{R}^n \to \mathbb{R}^m$ è una applicazione lineare, allora L è iniettiva se e solo se il rango della matrice associata è n.

(V) (F)
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 è una matrice ortogonale.

- (V) (F) Se λ è autovalore dell'operatore T, $\forall v$ vale $T(v) = \lambda v$.
- (V) (F) Se $det(3A) \neq 0$, allora A^3 è invertibile.

Risolvere per esteso sul retro di questo foglio.

1. Diagonalizzare, se possibile, l'operatore su \mathbb{R}^2 rappresentato dalla matrice $\begin{pmatrix} -1 & 3 \\ 0 & -1 \end{pmatrix}$ (cioè trovare la matrice diagonale e la base di autovettori), oppure spiegare perché non lo è .

2) Sia
$$f:(\mathbb{R}^*, ., 1) \to (\mathbb{R}^*, ., 1)$$
 data da $f(x) = x^2$. Dimostrare che f e' un omomorfismo di gruppi, e calcolare $Kerf$.