R6079 Levothyroxine skin permeation and accumulation

C. Padula, A. Pappani, P. Santi, Department of Pharmacy, University of Parma, Italy

AIM OF THE WORK

The aim of this work was to determine in vitro the extent of thyroxine (TX) skin permeation and accumulation from different formulations.

The objectives were:

- passive and post-iontophoretic passive TX ✓ To study (1) from semisolid formulation (i.e. diffusion microemulsion and commercial cream).
- ✓ To formulate TX in Patch-non-Patch[®] films (2).
- ✓ To evaluate the effect of occlusion on TX permeability.

Somatoline[®] (Manetti & Roberts, Italy) a commercial cream containing thyroxine was used as reference.

METHODOLOGY

Permeation experiments

- Franz diffusion cells
- > Barrier: rabbit ear skin
- > Receptor solution: saline
- > Donor: Microemulsion Somatoline[®] Patch-non-Patch®
- > Pre-treatment: cathodal iontophoresis (0.5 mA/cm²) for 1 h


HPLC analysis

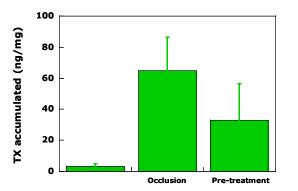
- Waters Spherisorb® Cyano (Millipore, USA)
- Mobile phase: H₂O:CH₃CN:H₃PO₄ (70:30:0.1)
- Flow rate: 0.3 ml/min
- UV detection at 225 nm

Patch-non-Patch® composition

	PnP	PnP-ME
PVA 20% (a)	62.00	55.94
PVP 21% (b)	27.00	24.36
Sorbitol (c)	4.00	3.61
Water	6.25	6.32
тх	0.75	0.74
Microemulsion	-	9.02
())		

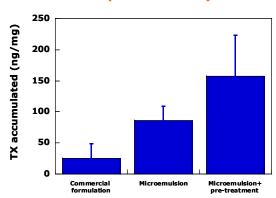
(a) Water solution (p/p) Water/PEG400 solution (85:15, p/p) (c) Water solution 70% (p/v) (h)

TX skin extraction


- 0.1 ml 0.01M methanolic NaOH solution
- 0.9 ml HPLC mobile phase
- 40°C for 30 min
- 5000 rpm for 10 min

Microemulsion composition

	%
Isopropyl myristate	36.60
Tween 80	20.50
Span 20	20.50
Water	18.20
Isobutanol	4.50
тх	0.75


	%
Isopropyl myristate	36.60
Tween 80	20.50
Span 20	20.50
Water	18.20
Isobutanol	4.50
тх	0.75

RESULTS

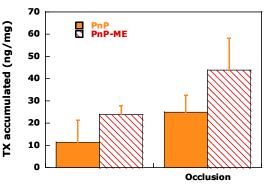
In the experimental condition adopted, TX was never found in the receptor compartment. All data are reported as mean values \pm s.d.

Commercial formulation

- ✓ Occlusion determined significant (p<0.001) higher TX skin concentration.
- ✓ The application of electric current did not determine an increase either in skin post-iontophoretic passive flux or skin accumulation.

Microemulsion

- \checkmark ME determined higher (p<0.01) TX skin accumulation compared to commercial formulation.
- ✓ Post-iontophoretic skin flux did not change compared to passive diffusion, but significant differences (p<0.05) were observed between the amounts of drug accumulated.


Patch-non-Patch®

- ✓ The presence of an occlusive backing increased TX skin retention, although in a non significant way.
- ✓ Introducing microemulsion in the PnP, the extent of accumulation was not significantly higher but the effect of occlusion was more evident (p<0.005).

CONCLUSIONS

- The skin serves as an efficient barrier to thyroid hormones permeation: TX is able to accumulate in the skin but not to cross the skin.
- The use of cosmetic formulations containing TX seems not to represent a risk for patients suffering from thyroid disorders.

Patch-non-Patch®

REFERENCES

- 1. P. Santi et al., Int. J. Pharm., 266 (2003) 69-75.
- 2. C. Padula et al., J. Control. Release, 88 (2003) 277-285.