Progesterone permeation from a new transdermal therapeutic system

V. Aversa, S. Cella, P. Colombo, P. Santi

Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43100 Parma, Italy

Purpose of the Work

The purpose of this work was to evaluate in vitro the transdermal delivery of progesterone from a new bioadh esive film called Patch - non - Patch [®] (PnP), in comparison with Crinone 8 [®] (Industria Farm aceutica Serono, Italy), a commercial formulation of the drug.

PnP is a single lay er film – bioadhesiv e only in the presence of water – thin transparent and m echanically resistant (1). PnP films were prepared by mixing a film -form ing poly m er (aqueous solution of PVA), an adhesiv e (aqueous solution of PVP K90 and PEG 400) and a w/o isopropy I my ristate -based microem ulsion in which progesterone was solubilized . The mixture was then spread on siliconized paper and ov en - dried at 80 °C for 30 minutes .

Methodology

Permeation Experiments			HPLO
F ranz ty pe df usion cells	(0.63 cm	2)	Colum
Barrier : Rabbite	ear skin		Mobile
Receptor : saline containing 0.4% of	solution f HP -β-CD		

CAnalysis of Progesterone

Column Nova-pak[™] C18 (Waters) Mobile phase : CH ₃CN:H ₂O (62:38 v/v) Flow rate: 1m l/m in Uv detection: 241 nm

Results and Discussion

Table 1. Drug loading of the formulations tested and relative amount of progesterone delivered after 24 hours

Formulation	Drug Applied (mg/cm²)	Progesterone permeated after 24 h (μgtrm²)
Crinone [®] 8	0.8	25.10 ± 2.94
PnP 1	0.12	23.96 ± 2.63
PnP 2	0.12	49.43 ± 6.43

Table 2. Composition of the films PhP1 and PhP 2 (% www.ndrv_basis)

Composition	PnP 1	PnP 2
PVA	42	15
Adhesiv e	30	40
Microemulsion	26	43,5
Progesterone*	2	1,5

The amounts of progesterone delivered from PnP1 and from Crinone [®] 8 were comparable after 24 hours, while PnP2 showed a higher permeation profile. This behaviour probably depends on two factors:

- 1. The higher content of m icroem ulsion in PnP 2, because isopropy Imy ristate the m ain component of m icroem ulsion is known to be a perm eation enhancer (2).
- 2. The absence of cry stals in PnP 2, because precipitation of progesterone determines a reduction in the perm eation of the drug across the skin .

References

 Bioadhesive film for the transdermal delivery of lidocai ne: in vitro and in vivo behavior, C. Padula, G. Colombo, S. Nicoli, P.L. Catellani, G. Massimo, P. Santi, J. Control. Release, 88 (2), 277 - 285, 2003.

2. Effectiveness and mode of action of isopropyl myistate as a per meation enhancer for naproxen through shed snake skin , H. Suh, H.W. Jun, J. Pharm. Pharmacol., 48 (8), 812 - 816, 1996.

*The total amount of progesterone added in the preparation of the film PnP1 exceeded the solubility of the drug in the ME, leading to a supersatured system. Optical microscopyeamination in the presence of polarized light showed the presence of several crystals of progesterone in PnP1 (figure 2), while few crystals were observed in PnP 2 (figure 3).

Figure 2. PnP 1

Crystals of progesterone observed in the films by optical microscopy in the presence of polarized light

Figure 3. PnP 2

Figure 1. Perm eation profiles of progest erone from the films and from the commercial g el

Conclusions

 The bioadh esive films proposed
 are promising therapeutic systems for
 the transdem al

 delivery of progesterone,
 able to
 com pete
 with a m arketed product
 . The presence of a

 microem ulsion is
 a critical parameter
 of the form ulation
 of the film, both for the stabilization
 of

 the drug
 and for the am ount
 of progesterone
 delivered
 in vitro
 across the skin .

Acknowledgments